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Abstract—Target re-identification approaches generally per-
form association between camera pairs only. However, in a multi-
camera system many-to-one camera associations are needed when
targets transit from multiple source-cameras to a destination-
camera. To address this problem, we propose a person re-
identification approach that generates camera-invariant object
matching scores, which are based on re-identification score vari-
ations in multiple camera pairs. Each camera pair is represented
with two parametric distribution models obtained by curve fitting
on intra-class and inter-class target matching scores. These two
models are combined to generate the likelihood of a correct match
between a new target in the destination-camera and those in all
source-cameras. We show the improvement in the performance
of the proposed re-identification approach compared to existing
pairwise approaches on two publicly available datasets.

Keywords—Camera network, multiple source-cameras, many-to-
one association, re-identification, distribution estimation, probability
density function, appearance information.

I. INTRODUCTION

Re-identification aims at the recognition of the same ob-
ject that appears over time in different cameras with non-
overlapping fields of view [1], [2]. Re-identification is usually
performed in a pairwise manner assuming that the source-
camera (i.e. the camera whose field of view was left by the
object) is known [3], [4], [5], [6], [7], [8]. However, in real-
world camera networks, an object in a destination-camera
could have been generated by multiple candidate source-
cameras.

In this paper, we propose a re-identification approach
for the case when a camera detects objects that can come
from different source-cameras. We estimate the distributions
of matching scores obtained by association of objects in each
camera pair. We apply a data over-sampling technique to
balance the number of obtained matching scores between the
same persons and different people in a camera pair. Using
the distributions of these scores, we measure probabilities
of a correct match from the objects detected in a group of
source-cameras. We generate the camera-invariant matching
scores/likelihoods by maximizing the differences between the
probabilities of being the same or different objects. Association
is then performed by optimal assignment using the Hungarian
algorithm.

The paper is organized as follows. In Sec. II, we discuss
existing feature sets and pairwise association approaches.
Sec. III describes the steps involved in the proposed approach.
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In Sec. IV, the approach is validated and compared with
existing re-identification approaches using two multi-camera
datasets. Finally, Sec. V draws conclusions and discusses the
future work.

II. PREVIOUS WORK

In this section we briefly review the features and the asso-
ciation methods that are used in the re-identification literature.

Features include color, texture and shape of an object
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. Features
to be used for re-identification need to present a certain
level of invariance to account for the pose, illumination and
size variations that are likely to occur in different camera
views. Appearance information can be extracted from a single
instance of an object [4], [5], [10] or from multiple instances of
the same object in the same camera view in order to generate a
more robust representation [13]. Histograms of color-channels
such as RGB [7], [9], [14], HSV [6], and YUV [15] can be
used as color features. Gabor and Schmid filters are applied
to one image channel and the histograms of convolved images
are used as texture information [3], [5]. Local binary patterns
[16] and feature point descriptors like SIFT [13] are also
applied to extract textures. The shape of an object can be
preserved by region covariance descriptor [17] and histograms
of oriented gradients [13]. Concatenation of histograms is also
common [3], [4], [5]. Multiple features can be combined to
improve inter-object discrimination. Moreover, features can
be selected using the Attribute-Sensitive Feature Importance
(ASFI) method [18] or the Cost-and-Performance-Effective
(CoPE) feature-selection method [10].

Association for re-identification can be performed by fea-
ture correlation [11], direct distance minimization (DDM)
and learning approaches. DDM measures the similarity (dis-
tance/score) between the features in a camera pair using
for example the Bhattacharyya Distance [6], [19], the Eu-
clidean distance, Kullback-Leibler Distance [7], [15], the sum
of absolute [20] or quadratic [21] distances. DDM is less
robust to illumination changes, which can be compensated
by the cross-camera color calibration that maps the color
features between a camera pair before the association [15],
[19]. Feature transformation and projection [22] may also
be applied. In addition to AdaBoost [5] and rankSVM [4],
another learning approach used in pairwise re-identification is
Probabilistic Relative Distance Comparison (PRDC) [3], which
maximizes the probability of correct matches and minimizes
that of incorrect matches by learning their relative distances in
a camera pair.



Distribution 

fitting 
Similarities for 

camera-pairs 

Training 

Feature 

extraction 

Pn in Cn 

Label 

Assignment 

Similarity 

measure 

Likelihood 

estimation 

Feature sets 
from  N

n 

Identity 

label 

Testing 

1 

2 

α 
PDFs for 

camera-pairs 
α 

2 

PDFs
 

���� �=1Mqn  from Cqn 

Snqn
 

Fig. 1. Block diagram of the proposed re-dentification approach for multiple source-cameras. Switch α = 1 is Training and α = 2 is Testing. Nn is the set
of neighboring cameras of Cn.

III. ASSOCIATION WITH MULTIPLE SOURCE-CAMERAS

A. Overview

Let C = {Cn}
N
n=1 be a network of N cameras. Let Cqn be

defined as neighbor of Cn if an object leaving Cqn can enter
Cn without passing through any other cameras. Each Cn has

N̂n neighboring cameras Nn = {Cqn}
N̂n

qn=1, where qn 6= n,

N̂n ≤ N and Nn ⊆ C.

Let a set Pn = {Pm
n }Mn

m=1 of Mn objects be detected in
Cn. For each Pm

n we aim to identify its other instance P k
qn

detected in an unspecified camera in Nn, where k = 1 · · ·Mqn

and Mqn objects are detected in Cqn . This can be cast as a
content-based information retrieval problem, where the most
relevant matches are retrieved/ranked for a given query Pm

n

from multiple information sources (Nn).

In order to perform many-to-one camera association for
retrieving the correct match, we aim to generate camera-
invariant matching scores from the matching model of each
camera pair (Cn, Cqn) obtained by exploiting similarities
between objects.

The proposed association approach (Fig. 1) estimates the
likelihood of a correct match in the case of objects coming
from multiple source-cameras. If Mqn objects are generated
by each source-camera Cqn that go to Cn, the the number of
objects Mn detected in Cn is

Mn =

N̂n
∑

qn=1

Mqn . (1)

From each detected object in each camera we extract the
feature set Fm

n = {fmr
n }Rr=1 containing R features. We apply

the pairwise association approaches on Fm
n and the obtained

feature sets {Fk
qn
}
Mqn

k=1 from Cqn to get Mqn similarity scores

{Smk
nqn

}
Mqn

k=1 for Pm
n .

B. Training

In the training phase, we get a set of similarity scores Snqn

between Mqn objects detected in a camera pair (Cn, Cqn)

Snqn =
{

{

Smk
nqn

}Mqn

m=1

}Mqn

k=1
. (2)

Snqn contains Mqn × Mqn elements. We divide Snqn in

two subsets S+
nqn

and S−
nqn

, which respectively contain the
similarity scores for the same objects S and the different
objects S in a camera pair. Training for re-identification suffers
from under-sampling due to the availability of few object-
images and many pose and illumination changes [3], [10].
In addition, |S+

nqn
| << |S−

nqn
| results in an unbalanced class

problem (|.| is the cardinality of a set). In order to compensate
for the under-sampled and unbalanced data, we include more
related-samples, generated by applying the oversampling tech-
nique SMOTE [23] on the scores in S+

nqn
and S−

nqn
. SMOTE

measures the difference between the sample and its nearest
neighbor(s), and the difference is added to the sample under
consideration to generate similar synthetic examples. Next,
we normalize the histograms of S+

nqn
and S−

nqn
to obtain

their corresponding Probability Density Functions (PDFs).
We characterize the PDFs by fitting the existing parametric
distribution models [24]. The two models T+

nqn
and T−

nqn

nearest to the PDFs of S and S are selected by applying
Bayesian Information Criterion [25] (Fig. 2).

The performance of the approach can be improved by
increasing the number of objects detected in each camera
pair and available for training, which needs to be performed
only once during the camera network setup. If Mqn objects
are required for the training of a camera-pair (Cn, Cqn), the
addition of a new destination-camera Cn to N cameras of the
network would require Mqn × N̂n objects that move from N̂n

source-cameras to the new camera. In the worst-case scenario
when every destination camera has N − 1 source cameras,
the training required for the N cameras network is increased
by N(N − 1)/2.

C. Testing

In the testing phase, a new object Pm
n is detected in Cn and

feature sets are received from the set of neighboring cameras
Nn. We measure the similarity score Smk

nqn
using Fm

n and each

obtained feature set Fk
qn

from Cqn . Next for the given Smk
nqn

, we

measure the probabilities p(S|Smk
nqn

) and p(S|Smk
nqn

) of Pm
n and

P k
qn

to be the two instances of the same or different objects,
respectively, given as

p(S|Smk
nqn

) = G(Smk
nqn

, T+
nqn

),

p(S|Smk
nqn

) = G(Smk
nqn

, T−
nqn

),
(3)
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(a) (b) (c) (Cn, C1n)
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(d) (e) (f) (Cn, C2n)

Fig. 2. An example of distributions of matching distances between objects detected in Cn and one of its two neighboring cameras (top row) C1n
and (bottom

row) C2n
. Legends are sorted in the order of nearest distribution to the data identified using Bayesian information criterion. Distances are between (a,d) same

and (b,e) different objects in a camera pair. (c,f) The two selected distribution models for each camera pair.

where G(., .) takes as input the similarity score Smk
nqn

and

one of the selected models from T+
nqn

and T−
nqn

of the

corresponding camera pair (Cn, Cqn) and returns the proba-
bilities of being two objects the same or different. Since the
two probabilities are independent, we can combine them to
maximize the likelihood Lmk

nqn
of Pm

n and P k
qn

to be a correct
match as

Lmk
nqn

= p(S|Smk
nqn

)− p(S|Smk
nqn

). (4)

Lmk
nqn

∈ [−1, 1]. The larger Lmk
nqn

, the higher the probability
for the pair to be a correct match. For each Pm

n , we get Mn

likelihoods from all the objects detected in Nn which results
in the likelihood matrix Ln for the set of Pn objects given as

Ln =

[

[

[

Lmk
nqn

]Mn

m=1

]Mqn

k=1

]N̂n

qn=1

. (5)

Lmk
nqn

is camera-invariant due to the individual modeling of
distributions of similarity scores in each camera pair, therefore
the assignment of Pm

n to P k
qn

coming from any Cqn becomes
possible. Finally, we select the correct from the obtained
likelihoods Ln by optimal assignment using the Hungarian
algorithm [12]. The algorithm performs group assignment
without repetition such that the summation of likelihoods
between all the assigned pairs in a group remains minimum.

IV. EVALUATION AND DISCUSSIONS

We evaluate the proposed approach with learning, prob-
abilistic and DDM based pairwise association approaches:
PRDC [3], RankSVM [4], ASFI [26] and Bhattacharyya
distance, using rank-ROC curves. Unlike CMC [5], rank-
ROC curves explicitly show at each rank the false positive
rate (FPR) [1-specificity] along with the true positive rate
(TPR) [sensitivity].

Single images of persons per camera are manually ex-
tracted. We extract color and texture features. Each feature
is a 16-bin histogram of a color channel or a filtered image,
extracted from each of the 6 horizontal stripes of the person
image. We use eight color channels (R, G, B, H, S, Y, Cb, Cr)
from RGB, HSV, and YCbCr color spaces, and for texture,
eight Gabor and 13 Schmid filters are applied on the Y channel
of the image as in [5], [3], [18], [10].

We also apply the proposed association approach with the
features selected by CoPE [10]. CoPE returns a list Ynqn of se-

lected features for each camera pair such that Pm
n and P k

qn
are

represented by Fm
n = {fmr̂

n }r̂∈Ynqn
and Fk

qn
= {fkr̂qn}r̂∈Ynqn

,

respectively. Using each selected feature fr̂, we apply DDM

(Bhattacharyya) to obtain a similarity score matrix Sr̂
nqn

(Eq. 2)

and estimate T
(r̂)+
nqn and T

(r̂)−
nqn , for the camera pair (Cn, Cnqn ).

For the new objects Pm
n and P k

qn
, and each selected feature, we

measure the likelihood L
mk(r̂)
nqn of a match (Eq. 4) and obtain

a combined likelihood score Lmk
nqn

for CoPE as

Lmk
nqn

=

r̂∈Ynqn
∑

L
mk(r̂)
nqn

|Ynqn |
. (6)

Finally, we obtain the matrix Ln (Eq. 5) for assignments.

We use two publicly available person datasets: the WARD
dataset [13] and the Torch dataset [12]. WARD contains 70
persons from three non-overlapping fixed-cameras with the
challenges of illumination changes, and variations in pose
and size. Torch contains 50 persons from five hand-held
smartphone cameras representing an outdoor crowd scene
with additional challenges of occlusions, occasional jitters and
blurring. We assume that the person detection problem is
solved [27].
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Fig. 3. Ranked ROC curves for re-identification in three-camera settings using the existing approaches: PRDC [3], ASFI [26], rankSVM [4] and CoPE [10]
compared with the proposed association approach using, (a-c) WARD dataset [13] (|Pn| = 30), and (d-f) Torch dataset [12] (|Pn| = 24). Each camera detects
persons that come from the other two as source-cameras such that persons appear in (a, d) C1 from C2 and C3, (b, e) C2 from C1 and C3, and (c, f) C3 from
C1 and C2. Key: Bhatt. - Bhattacharyya distance, Prop. - Proposed approach.

TABLE I. EXPERIMENTAL SETUP USED FOR THE EVALUATION.

Datasets

network Persons in Neighboring Persons in

FPssize (|C|) Cn (Mn) cameras (|Nn|) Cqn
(Mqn

)

WARD

2 30 1 30 -

3 30 2 15 -

3 38 2 15 8

Torch

2 24 1 24 -

3 24 2 12 -

3 30 2 12 6

4 24 3 8 -

5 24 4 6 -

We apply two-fold cross validation such that half of the
dataset is used for training [Table I]. The number of persons
detected in Nn are fixed to 30 in WARD, and 24 in the Torch
dataset. We also perform the experiments with 25% added false
positives (FPs), i.e. persons detected in Cn that do not appear
in Cqn

1. Finally, we analyze the changes in re-identification
rate by increasing the number of cameras.

Fig. 3 shows the ROC curves for re-identification in three-
camera settings for WARD and the Torch datasets. Due to the
likelihood measure in Eq. 4, the performances of the existing
pairwise methods are improved by the proposed association
approach. In WARD dataset, the less illumination changes
resulting in more inter-camera similarities make it challenging
to learn differences between camera pairs. The proposed
approach increases TPR of PRDC and RSVM from the range

1Note that while we do not perform experiments with false negative
detection (i.e. persons detected in Cqn

that do not appear in Cn) because
of the limited size of the dataset; using the optimal assignment used in the
proposed approach, we would expect that the influence of false negatives
would be comparable to that of additional false positives in terms of re-
identification performance.

between 0.25 and 0.55, upto 0.75 in the start of the curves.
In Torch dataset, the re-identification rate is less compared to
the WARD for all approaches due to the additional challenges
of occlusions and blur; however, compared to the existing
approaches, improvement in the re-identification rate can be
observed by the proposed approach. CoPE using the proposed
approach shows the highest improvement in the performance
due to the likelihood estimation at the feature level (Eq. 6),
while ASFI and DDM remain the least in both pairwise and
three-camera settings.

Fig. 4 shows the ROC curves for re-identification with
added FPs in three-camera settings (8 in WARD and 6 in
Torch). In both datasets the re-identification rate is improved
with the proposed association approach. In WARD, TPR of
the proposed approach with PRDC and RSVM remain higher
starting at 0.3 and reach to 1 at 80% of the FPR. In the
Torch dataset, due to the more challenging settings, ASFI
and Bhattacharyya do not perform well; however, the learning
methods RSVM and PRDC with the proposed approach remain
least effected and show improvement in TPR. CoPE shows the
highest rate of improvement in the re-identification with the
proposed association approach.

Finally, we analyze using the AUC of ROC how the re-
identification performance varies as the number of cameras
increases (Fig. 5). We use five cameras from the Torch dataset.
Keeping the total number of persons detected in Cn fixed to 24,
the experiments are performed for all combinations containing
one, two, three and four source-cameras (Table I). The pro-
posed approach improves the re-identification performance for
all combinations of cameras in the network. As the number
of cameras increases the performance decreases gradually;
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however the rate of decrease in performance is relatively
small, especially when the proposed association approach is
applied with PRDC, RankSVM and CoPE. DDM shows the
best improvement with the proposed approach.

V. CONCLUSIONS

We proposed an association approach to extend pairwise re-
identification methods to multiple cameras. The proposed ap-
proach estimates the likelihood of a correct match in a camera
network from the similarity scores in camera pairs. We showed
that the proposed approach can improve the re-identification
rate by 20% on two datasets, while the degradation in the
performance as the number of cameras increases is smaller
than for existing approaches.

As future work, we aim to extend the validation to a larger
dataset and to represent each camera pair with a single mixture
model of distributions and to represent multiple camera pairs
with same models to improve scalability
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