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Abstract— This paper presents a centralized algorithm for
multi-scale observation of multiple moving targets using a team
of Micro Aerial Vehicles (MAVs). The proposed algorithm
is appropriate when MAVs can observe targets at different
elevations with the objective of jointly maximizing duration and
resolution of observation for each target. The MAVs share the
workload using a greedy assignment of locations and targets to
MAVs. The proposed algorithm uses a quad-tree data structure
to model the movement decisions of MAVs as well as the
variable qualities (resolutions) of observations. We consider
cases where there is uncertainty in the target observations
(i.e., measurement noise), the number of targets is larger than
that of the MAVs and the combined field of views (FOVs) of
the sensors cannot cover the whole search region. Simulation
results confirm the effectiveness of the proposed algorithm.

I. INTRODUCTION

Many search and rescue, reconnaissance and surveillance
tasks require a team of cooperating robots that monitor
multiple moving targets [1], [2], [3]. Other applications
of such cooperative observation of multiple moving targets
can be found in sports [4], crowd and social movement
monitoring [5] and wildlife research [6]. Existing works have
mostly focused on ground robots [7] and consider perfect
sensors [7] that are not affected by noise or detection errors
(i.e., false and miss detection).

The versatility of Micro Aerial Vehicles (MAVs), such
as quad-rotors [8], favours their use as multi-MAV systems
to observe a scene from different viewpoints [9], [10] and
at different spatial scales (resolutions) [11], [12], [2], [3],
[6], [8]. A key research problem is the dynamic placement
of these MAVs to maximize the observation of the number
targets as well as the resolution (i.e., quality) of observation.

The use of a cooperative team of autonomous sensor-based
homogeneous robots for observing multiple moving targets,
also known as Cooperative Multi-robot Observation of Mul-
tiple Moving Targets (CMOMMT), is an NP-hard problem
[1]. CMOMMT considers a greater number of targets than
robots and develops a dynamic placement strategy for ground
robots to maximize the collective time during which each
target is observed. Each robot operates either in search or
track mode. When a robot finds one or more targets in its
FOV, it tracks them and moves toward the virtual center of
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mass of the moving targets. A robot is attracted to the near-
by targets to keep close enough to observe them and repulsed
by neighbor robots to avoid observation overlap. The robot
switches back to search mode when there are no targets in
its FOV.

CMOMMT using local force vectors [1] for coordination
among robots was upgraded to Approximate CMOMMT
(A-CMOMMT) by including weighted local force vectors
[13], [14] and P-CMOMMT [15] by reducing the overlap
of observation of a single target by multiple robots. To
reduce the risk of losing a target, Behavioral CMOMMT
(B-CMOMMT) [16], [7] adds a third mode of operation,
namely the help mode: a robot that it is about to lose a target
broadcasts a help request to other robots. The robots in search
mode respond to this request by approaching the robot that
issued the request. A similar approach was also proposed in
[17] by assigning different priority weights to targets. Instead
of using local force vectors and help calls, flexible formation
of robots [18] and model-predictive control strategies [19]
can be used in CMOMMT. Important parameters are the
degree of decentralization [20] and the minimization of the
time of initial contact with a newly generated target [21].

More recent methods use MAVs to increase the observa-
tion of moving targets [22], [23]. Existing CMOMMT ap-
proaches [1], [13], [14], [15], [7], [19], [21] and MAV-based
observation of moving targets are based on uniform FOV
and uniform resolution observations. A tool for multiscale
observation using MAV is quad-tree [11], [12], which was
explored only for searching stationary targets with a single
MAV. Works on multiscale observation using a multi-MAV
system [10] are limited to the coverage of static environments
without any targets. Moreover, sensing limitations such as
measurement noise, miss-detections and false positives are
ignored in most approaches. Finally, cooperation among
robots is based primarily on attractive and repulsive forces
without planning.

In this paper, we extend the conventional CMOMMT
fixed-altitude or fixed-FOV-size problem to multiscale ob-
servations using a multi-MAV system with noisy sensors.
We modify the CMOMMT objective function by including a
term that accounts for the resolution of observation. To model
observations at large spatial scales (low resolution) versus
observations at a small spatial scales (high resolution), we
use a quad-tree to help in defining the tradeoff between the
visibility and the quality of observations of multiple moving
targets. Unlike conventional CMOMMT approaches, we also
model sensing errors in the form of measurement noise when
reporting the location of a target.
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Fig. 1: Observing multiple moving targets using cooperative
MAVs.

The rest of this paper is organized as follows. In Section II,
we formulate the problem. Section III defines the objective
function. Section IV discusses the proposed approach for
multi-scale observation of moving targets. In Section V, we
discuss simulation results. Finally, in Section VI we conclude
the paper and discuss future work.

II. PROBLEM FORMULATION

Let us consider an obstacle free, rectangular and bounded
search region Ω ∈ R2 with known dimensions (length l and
width w). Let G = {G1, G2, ..., GB} be a set of B mov-
ing, non-cooperative, non-evasive and uniquely identifiable
targets in Ω. The value of B is assumed to be known and
constant during the mission. The state of the jth target at
time t is denoted by

xtj = (xtj , ẋ
t
j , y

t
j , ẏ

t
j), (1)

where (xtj , y
t
j) and (ẋtj , ẏ

t
j) are the position and velocity of

the target. The motion of Gj is

xt+1
j = Φxtj + γj , (2)

where Φ is the state transition matrix with process noise
γj v N (0, Q) and process noise covariance matrix Q. The
movement of the targets is independent of each other and
the location of the targets in Ω is initially unknown.

Let U = {U1, U2, ..., UA} be a set of A homogeneous and
synchronized MAVs moving above the search region Ω in
discrete time t (Fig. 1). The value of A is known. The state
of the ith MAV at time t is

yti = (xti, y
t
i , z

t
i), (3)

which defines the position of the MAV Ui in space. The
MAVs are assumed to move above the region Ω and thus the
(x, y) components of yti coincide with (x, y) ∈ Ω. Because
of spatial quantization, we assume that more than one MAVs
can go to the same location and have the same state.

At time step t, each MAV executes the following three ac-
tions: takes observation, receives new location for movement,
and moves to the new location. We assume that A� B and
that the speed of each MAV is higher than that of the fastest

target. The MAV can hover at a specific location and there
is no constraint on its turning angle.

We assume that each MAV is equipped with a position
sensor (e.g., GPS) a surveillance sensor to observe Ω, a
wireless communication unit to exchange information with
a ground station, and a computing unit to perform updates
and local control actions.

The surveillance sensor of the MAV Ui consists of a
downward-looking camera with a constant zoom level. The
MAV Ui varies its FOV Fi by changing its altitude1 zi. For
simplicity we consider the FOV Fi ∈ Ω of MAV Ui to be a
square with side of length ϕ (Fig. 1).

A target is considered under observation when it is in the
FOV of at least one MAV. The observation of target Gj by
MAV Ui at time t is defined as

Otij =

{
1 if (xtj , y

t
j) ∈ Fi

0 otherwise.
(4)

A single MAV can observe multiple targets and a single
target can be observed by multiple MAVs. However, the
observation of a single target by multiple MAVs at time t is
of no advantage as we are not interested in depth perception,
multi-view analysis or in obtaining a good estimate of the
target position. We use the OR operator [1] to show that
observation by a single MAV is sufficient:

A∨
i=1

Otij =

{
1 if ∃i : Otij = 1
0 otherwise.

(5)

The MAV Ui collects a measurement ztij for target Gj
under its observation. The measurement zijt consists of the
observed target state for Gj . At time t, there can be nti ≤ B
targets in Fi and thus nti measurements can be generated. A
measurement ztij taken by the MAV Ui for target Gj at time
t is generated by the following model

ztij = Hxtj + ϑ, (6)

where H = (1 0 0 0; 0 0 1 0) is the observation matrix
with observation noise ϑ v N (0, R) and observation noise
covariance matrix R. Sensing errors (Eq. 6) can misguide the
MAV movement, which in turn may cause a target to escape
from observation. The states of all the targets, all the MAVs,
and the measurements for all the targets are denoted as Xt =
{xt1, . . . , xtB}, Yt = {yt1, . . . , ytA} and Zt = {zt1, . . . , ztB},
respectively.

III. MULTI-RESOLUTION OBJECTIVE FUNCTION

The standard CMOMMT [13], [14], [15], [7], [17] prob-
lem maximizes the collective time of observation represented
by the following objective function

Υ =

Γ∑
t=0

B∑
j=1

A∨
i=1

Otij , (7)

1The method is equally applicable to constant-altitude MAVs with vari-
able zoom levels (zi).



where Γ is the total time of the mission. We extend the
CMOMMT problem formulation to include variable reso-
lution of observations and measurement noise. We refer to
this problem as multi-scale observation of multiple moving
targets.

A higher value of the altitude z increases the FOV but
reduces the resolution of observation (i.e., the spatial scale
the target is being observed at). The variable resolution
observations can also improve the movement decisions of
the MAVs in order to maximize the number of targets
under observation. Reducing the value of z from the surface
of search region improves the resolution of observation.
However, we set a minimum allowed altitude z0, as reducing
altitude of the MAV below z0 may cause the MAV to hit the
target.

The resolution of observation of target Gj by MAV Ui at
time t is defined as

rtij =

{ 1
zti

if (xtj , y
t
j) ∈ F ti

0 otherwise.
(8)

In case of multiple MAVs observing a target Gj with
different resolutions, the resolution used is given as

r̂tj = max{rt1j , ..., rtAj}. (9)

In addition to maximizing the collective time of obser-
vation, we want to maximize the collective resolution of
observations.

Maximizing the collective resolution of observation of
the targets under observation corresponds to maximizing the
following objective function:

Ψ =

Γ∑
t=0

B∑
j=1

r̂tj . (10)

With limited number of MAVs (i.e., A < B) not all targets
might be under observation and it is not possible to observe
all the targets with high resolution all the time. The goal thus
becomes to maximize

g =
1

bΓ

(
αΥ + (1− α)Ψ

)
, (11)

where g ∈ [0, 1], g = 0 implies that no target is under
observation throughout the mission and g = 1 implies that all
the targets are under observation with the desired resolution
throughout the mission. The parameter α assigns a priority
weight or importance to the resolution of observation. Setting
α = 1 makes the problem as a standard CMOMMT prob-
lem with constant FOV and no interest in high resolution
observations.

In Table I, we provide some numeric values of g for B
targets and mission duration of Γ time steps. These values are
calculated by putting Υ (Eq. 7) and Ψ (Eq. 10) in Eq. 11 for
two different values of Γ and α. Setting α = 0 means that we
want to maximize the collective resolution of observations
of the targets that are currently under observation. Note
that it is difficult to get g = 1 for α = 0, as targets will
easily escape the smallest FOV. The multi-scale multi-MAV

TABLE I: Duration of observation and resolution of obser-
vation for B targets, mission duration of Γ time steps, and
highest resolution 1/z0 (z0 is lowest altitude).

Γ/2 Γ
Lowest resolution (α = 1) g = 0.5 g = 1
Highest resolution (α = 0) g = 1/z0 g = 1/2z0

coverage problem at hand is dynamic and, at each time step,
the coordinated movement approach should determine which
MAVs observe, the part of the search region to observe,
and the resolution of observation. We focus on developing
a centralized cooperation and movement strategy for a team
of MAVs to maximize g.

IV. QUAD-TREE BASED SPACE DISCRETIZATION

We discretize and model the 3D space for the movement
of MAVs as a quad-tree τ [24] with κ nodes. Let d denote
the depth of the tree where the root node is at d = 1 and the
leaf nodes are at maximum depth of d = ε. In the proposed
framework, the topology of the tree is fixed (nodes cannot be
added or deleted) and complete (all its leaves are at the same
depth). Except the root and the leaf nodes, each node k has
five adjacent nodes, i.e., k0 (parent node) and four children
nodes k1 (north west), k2 (north east), k3 (south east), k4

(south west). The levels of the quad-tree are related to the
minimum allowable altitude as

z = 2ε−dz0. (12)

By considering the value of z in Eq. 8 and dividing by z0

yields the normalized value ri ≤ 1 for the resolution of
observation made by MAV Ui at depth di

ri =
1

2ε−di
. (13)

Each node represents an allowable location for the move-
ment of MAVs, such that yti = k for k = {1, 2, ..., κ}.
Every node is associated with a FOV. Any MAV Ui that
hovers at node k will always have a specific FOV, denoted
as Fi = Fk ⊂ Ω. If k is an internal node and k1, ..., k4 are
its children, then the various Fki are obtained by splitting
the Fk into four equally sized squares. Therefore Fk =
∪i=1,2,3,4Fki and Fki∩Fkj = ∅ where ki and kj are siblings.
It is obvious that a MAV at node k with FOV Fk is already
observing Fk1 , Fk2 , Fk3 , Fk4 with resolution rk. An MAV
can only take observation when located at a node of τ as
shown in Fig. 2a.

The root of the quad-tree τ is centered at Ω, such that
Fτ = Ω and leaf nodes are at z = z0. This centralized quad-
tree is used as a coordination mechanism among MAVs. The
key purpose of the quad-tree is to reduce the movement
options from 27 in an unconstrained neighborhood cube
to only 14 (including the current position). These fourteen
nodes include the current node k, 8 nearest nodes on the
same level of the quad-tree k̂1, ...k̂8, the parent node k0,
and 4 children nodes k1, ..., k4. The exceptions are the root
node (5 movement options), the leaf node (10 movement
options), and nodes on d = 2 (9 movement options). The
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Fig. 3: Block diagram of the overall process in a single time
step.

fourteen movement options for a MAV hovering at node
k are shown in Fig. 2b. We do not need 27 movement
locations, because increasing the altitude reduces the number
of movement locations as

⋃
e∈E

Fe = Ω, where E is the set

of nodes at any given depth d.
Fig. 3 shows the overall process in a single time step. The

MAVs observe the targets’ actual states Xt at time step t and
generate the measurements Zt. Information about the target
locations Zt and current states of all the MAVs Yt at time
step t are used to update the centralized quad-tree τ . This
updated quad-tree and the current states of all the MAVs
are then used to move each MAV to one of 14 neighboring
locations.

The objective of MAV movement decision is to appropri-
ately identify the nodes of the τ that maximize the number of
targets under observation and their resolution. These nodes
are identified and assigned to the MAVs as waypoints at each
time step.

The ground station maintains the centralized quad-tree τ .
In addition to yi, each node of the quad-tree τ maintains the
following value

vk =
αnk + (1− α)nkrk

1 +mk
, (14)

where nk is the number of targets visible under node k,
mk is the number of MAVs hovering at node k and rk
is the resolution of observation taken by a MAV hovering
at node k (Eq. 13). An increase in the depth of node k
or the number of targets visible from node k increases the
value of vk. The term mk in the denominator introduces
the spread among the MAVs. In our proposed algorithm,
the ground station identifies and assigns nodes to the MAVs

that maximizes the team’s dispersion pattern, number of
targets under observation, and resolution of observation. The
movement decision takes into account two sub-goals, namely
maximization of the number of targets under observation and
resolution maximization. While the MAVs can be trapped
in a local maximum, the effects of this local maximum are
likely to be temporary as targets move.

The value of vk cannot be determined accurately when Fk
contains one or more targets and Fk is not observed by any
MAVs. The states of such unobserved targets are estimated
using Eq. 2 and last known locations of these unobserved
targets. To include uncertainty in these estimated target states
we use process noise covariance matrix Q which is greater
in magnitude than Q. We assume a random location in the
unobserved part of Ω as an estimate of the target for which
no information is available.

The centralized controller determines the new positions for
all the MAVs, as presented in Algorithm 1. At each time step,
the new positions are determined sequentially starting from
U1 to UA (line 15 in Algorithm 1). To find the new position
for a MAV Ui two steps are required. First, states for the
unobserved targets, if any, are estimated (line 16 to line 20)
and measurements zj (Eq. 6) about the target locations are
made. These measurements are used to calculate the value
of nk. Second, the value vk for all the nodes in τ is updated
(line 21 to 23). The values of nk and rk required to update vk
are determined from MAV observations (Eq. 6) and estimated
states of unobserved targets (line 16 to line 20). The value of
mk is updated in each iteration of the outer loop (line 15).
Third, the new position yt+1

i for MAV Ui is determined (line
27). This new position is one of fourteen adjacent positions
(including the current node) that has the maximum value of
vk. If more than one node has the same value of vk, priority is
given to the node at higher depth level (to reduce the altitude
of the MAV). If more than one node on one level of the quad-
tree has same value of vk, priority is given to the node that
comes first in the anti-clockwise direction. These priorities
are taken into account in line 25 and line 26 of Algorithm
1 by sorting the 14 nodes around node k into a temporary



Algorithm 1 MAVs movement.

1: A: number of MAVs
2: B: number of targets
3: xtj : state of target Gj at time step t
4: yti: state of MAV Ui at time step t
5: Φ: transition matrix (Eq. 2)
6: γj : N (0, Q) process noise (Eq. 2)
7: mk: number of MAVs at node k
8: nk: number of targets visible from node k
9: rk: resolution associated with node k (Eq. 13)

10: temp: temporary array to store 14 nodes priority-wise
11: s: temporary variable to store the current state Ui
12: Initialize quad-tree τ by setting vk = 0 for k = 1, ..., κ
13: Initialize the MAV states Y0

14: procedure MOVEMAVS(τ,Yt)
15: for i = 1 : A do
16: for j = 1 : B do
17: if Oj == 0 then
18: xtj = Φxt−1

j + γt−1
j

19: end if
20: end for
21: for k = 1 : κ do
22: vk = αnk+(1−α)nkrk

1+mk

23: end for
24: s← yti
25: temp← [s1, s2, s3, s4, s, s

−
1 s−2 s−3 s−4 s−5

26: s−6 s−7 s−8 , s0]
27: yt+1

i ←Node in temp with maximum value of v
28: end for
29: Output Yt+1

30: end procedure

array temp. The node in temp with a maximum value of
v is determined as the new position for MAV Ui (line 27).
After loop termination (line 29), the ground station has new
positions Yt+1 for all the MAVs. These new positions/states
are sent to MAVs for taking further observations.

V. SIMULATION RESULTS

We perform simulations for a region Ω of l×w = 4096×
4096 m2, mission duration of Γ = 1000 time steps, Q =
0.1×I4×4, Q = 1×I4×4, target velocity of v = 5 m/s, and a
quad-tree τ of five levels (ε = 5). Knowing the dimensions of
the Ω, and ε the τ is initialized with vk = 0, k = 1, 2, ..., κ.
We initialize the location of each MAV from the root of the
quad-tree, unless otherwise stated. Fig. 4 shows the search
region with paths of B = 8 targets, initialized at random
locations and random directions.

We show the observations and their associated depths of
the quad-tree (d) for eight targets (B = 8) and a team of
three MAVs (A = 3) in Fig. 5a and Fig. 5b. The results are
the average of 100 runs of simulations for different target
tracks. Higher values of α affect the movement of MAVs
to increase the number of targets under observation but do
not care for quality of observation. Reducing the value of α
affects the movement of MAVs by forcing them towards leaf
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Fig. 4: Paths of B = 8 targets for Γ = 1000 time steps.
Black circles show the starting points of the paths.

nodes d = 5. Fig. 5b shows that, on average, all the targets
are observed at high resolution.

The time evolution of paths for A = 3 MAVs observing
B = 8 targets is shown in Fig. 6. The MAVs U1 and U3

start observing targets with highest resolution during the first
Γ = 100 time steps. The MAV U2 cannot reduce the altitude
because it would make more targets unobserved. Throughout
the mission, the MAVs vary their altitudes to avoid empty
FOV and large number of targets being unobserved.

The effect of changing the number of MAVs and targets
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Fig. 5: Observations and their associated quad-tree depths
for B = 8 targets and A = 3 MAVs.
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Fig. 6: Sample paths of A = 3 MAVs (α = 0.1).

on the performance measure (Eq. 11) is shown in Fig. 7.
The figure shows how the approach scales with the number
of targets and MAVs. The increase in the number of MAVs
(A) for a given value of B and a given value of α always
increases the resolution observation of targets (g). Increasing
the number of targets (B) results in the following four
different trends, which are caused by different values of A
and α: (i) smaller values of both α and A result in slower
increase of g; (ii) the combination of smaller value of α
and larger value of A decreases g; (iii) the combination of
larger value of α and smaller value of A increases g; and
(iv) larger values of both α and A decrease g. It is clear
from Fig. 7 that the value of g for different values of A
converges as we decrease the value of the ratio A/B. This
convergence is faster for higher values of α. A decrease of
α compels the MAVs to reduce their altitudes getting more
targets out of observation, which reduces not only the value
of g but also the convergence to same value of performance
measure. Therefore, a decrease in α for given values of A
and B decreases the value of g.

We show the effect of the quad-tree size on the perfor-
mance measure (Eq. 11) in Fig. 8. We perform the simulation
for the quad-tree ranging in size from one level (only one
node, ε = 1) to seven levels (ε = 7, 4096 leaf nodes and
21845 total nodes). It is clear from Fig. 8 that the size of the
quad-tree does not affect the performance for α = 1. Because
the MAVs will always increase altitude to observe the whole
region. However, for smaller values of α, increase in size
of the quad-tree abruptly increases the performance. We find
that allowing more locations for the MAV movement can
maximize both the collective time and collective resolution
of observation.

The MAV location initialization also affects the perfor-
mance of our proposed approach. The effect of MAV location
initialization is shown in Fig. 9. We perform one simulation
by initializing all the MAVs at the root node of τ and one
simulation by initializing all MAVs at random leaf nodes.
We plot

gt =
1

B

B∑
j=1

(
α

A∨
i=1

Otij + (1− α)

A⊔
i=1

rtij

)
(15)

for each time step, t, to show the instantaneous performance
of our proposed approach. Fig. 9 shows that initialization at
root node is better for immediate performance (notice first
50 time steps in Fig. 9). As time passes, performance due to
both types of initializations converges to the same value.

The effect of observation noise (Eq. 6) is shown in terms
of covariance matrix, which is R = u × I4×4. We increase
the observation noise by increasing the value of u. Fig. 10a
and Fig. 10b show the effects of observation noise on g and
cost e, respectively. We are interested only in the cost of
moving from one depth of the quad-tree to another. The cost
incurred by MVA Ui at time step t is defined as

cti = ε− di, (16)

and the collective cost is

e =

Γ∑
t=1

A∑
i=1

cti. (17)

The results in Fig. 10a and Fig. 10b are average values of
100 simulation runs. While an increased sensor noise does
not affect g, it increases the movement cost by moving the
MAVs upwards.
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Fig. 7: The effect of the ratio A/B for different values of α.
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Fig. 8: The effect of the quad-tree size on g (A = 3, B = 8).

VI. CONCLUSIONS

We presented a quad-tree based centralized movement
strategy for a team of MAVs to maximize the collective
time and quality of observation for multiple moving targets.
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(a) MAVs start at the root node.
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Fig. 9: The effect of MAV location initialization (A =
3, B = 8, α = 0.5).
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Fig. 10: The effect of observation noise R = u× I4×4 (A =
3, B = 8, α = 0.5).



We also compared two mobility options on the quad-tree
for movement of MAVs. This movement strategy enables a
team of MAVs to work together towards a common goal of
maximizing observation of large group of moving targets.
The proposed method is suitable not only for aerial robots
that can move in 3D space, but also for sensors that can
control the location and zoom level of their FOVs.

Several variations of this dynamic sensor coverage prob-
lem are possible, such as considering distributed coordina-
tion, heterogeneity of sensors (including pan-tilt-zoom and
other parameters of the sensor), the characteristics of the
terrain and the cost of movement.
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