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Abstract—Recent advances have enabled a dramatic change
in camera networks. Smart cameras perform image analysis
onboard, adapt their algorithms in response to changes in their
environments and collaborate with other cameras in order to
analyze the dynamic behavior of objects in partly unknown envi-
ronments. A fixed configuration is infeasible to manage the trade-
off among performance, flexibility, resources and reliability in
such camera networks. We adopt the concepts of self-awareness
and self-expression for autonomous monitoring of the state and
progress of the camera network and adaptation of its behavior
to changing conditions. We describe the building blocks for self-
aware camera networks and demonstrate the key characteristics
in simulation and a real camera network.

Index Terms—Self-awareness, self-expression, smart camera
networks, real-time adaptability.

I. INTRODUCTION

Camera networks are now ubiquitous and have applications
in security, disaster response, environmental monitoring and
smart environments, among others. Smart camera networks
have emerged recently by bringing together advances in
computer vision, embedded computing, image sensors and
networks. They are real-time, distributed, embedded systems
that perform computer vision tasks using multiple cameras [1].

In order to provide in-network processing of captured data,
smart camera networks have to deal with various challenges.
Cameras analyze the highly dynamic behavior of objects,
are deployed in partly unknown environments and cooperate
with neighboring cameras on demand. Future camera networks
should be able to achieve advanced levels of autonomous
behavior to adapt themselves at runtime and learn behaviors
appropriate to changing conditions. A particular challenge is
to manage the trade-off of conflicting objectives such as high
performance, low resource consumption and high reliability.
A fixed configuration of the camera network is infeasible to
overcome these challenges [2].

As a successful alternative we adopt the concepts of self-
awareness (SA) and self-expression (SE), translating them
to computational analogies and applying them to camera
networks. Both concepts are new to the domains of computing
and networking. Self-awareness refers to the ability of a
system to obtain and maintain knowledge about its state,
behavior and progress, enabling self-expression, the genera-
tion of autonomous behavior based on such self-awareness.
Together, self-awareness and self-expression support effective
and autonomous adaptation of behavior to changing condi-
tions. Learning models online of the camera’s state and context

B. Rinner, L. Esterle, and J. Simonjan are with the Alpen-Adria-Universität
Klagenfurt, Austria.

G. Nebehay, R. Pflugfelder and G. Fernández Domı́nguez are with the
Austrian Institute of Technology, Austria.

P.R. Lewis is with Aston University, U.K.

as well as decentralized decision making in the network are
the fundamental techniques for achieving SA and SE. The
building blocks and their interaction are explained in order to
build a computationally self-aware and self-expressive camera
network. Its features and capabilities are shown practically
with a distributed multi-camera tracking application as an
example.

AUTONOMOUS MULTI-CAMERA COORDINATION

Coordination is a fundamental problem in camera
networks with the key objective to dynamically assign
actions to cameras in order to improve the performance
of the network tasks. These tasks may include coverage
optimization, pan-tilt-zoom (PTZ) control and tracking
and can be found in a myriad of different applications
such as surveillance, transportation, security and activity
recognition [a, b]. The assigned actions determine the
placing and orientation of (mobile or PTZ) cameras, the
sensing capabilities such as resolution and frame rate, the
data processing and the data communication. Researchers
have adopted different approaches to coordinate multiple
active cameras such as control theory, game theory, state
machines, multi-agent systems, probabilistic approaches,
and many other ad-hoc approaches as well [c].

In centralized coordination the decision making is
performed at a single node that receives data from each
camera in the network. It introduces a significant compu-
tation and communication load but can achieve a high
task performance due to the availability of the entire
network information in a single node. In decentralized
coordination the decision making and the required data
from the cameras are distributed among the network.
In autonomous coordination each camera individually
decides what action to take based on its local assessment
which may include information from other cameras.

The goal of multi-camera tracking is to detect, localize
and track moving objects such as pedestrians or vehicles
within the fields of views (FOV) of all cameras. Decid-
ing which camera is responsible for tracking a specific
object represents a typical coordination problem [d]. In
centralized coordination the cameras send the traces of
the objects within their FOV to a central node which then
selects the best trace. In autonomous coordination each
camera decides by its own when and to whom to handover
the tracking responsibility. Deriving the handover deci-
sion based on incomplete information and with camera’s
limited resources is a fundamental challenge. SA and SE
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helps to overcome some of the difficulties of coordinating
the tracking responsibility and is able to achieve robust,
flexible and scalable multi-camera tracking control with
low computation and communication overhead.
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II. SELF-AWARENESS AND SELF-EXPRESSION

In common with many other emerging computational sys-
tems, smart camera networks face the challenge of operating
in a complex interconnected world, where they interact with
people and each other in ways which are difficult to understand
and predict. In order to meet this challenge, such systems
must possess an increased level of awareness, both of the
world around them and of themselves. But we must not
only attempt to replicate the self-awareness capabilities of
humans in computers; there will be important differences.
Instead, the notion of computational self-awareness is being
developed [3], inspired by concepts of human self-awareness.
Concepts of self-awareness need to be translated from fields
such as psychology and applied to the very different domain
of computing. Systems possessing such computational self-
awareness will be able to continuously learn and adapt during
their lifetime. They will build up an awareness of themselves
and of their own experience of the world which they inhabit.
And they will also need to be aware of the way in which they
themselves are aware of these things.

The study of self-awareness emerged as a field within
psychology in the 1960’s. Morin [4] defines self-awareness as
“the capacity to become the object of one’s own attention”.
A prerequisite for this is the capability to monitor or observe
oneself. Our work is concerned with taking inspiration from
self-awareness theories in order to better engineer computa-
tional systems. We therefore aim at bridging the gap between
psychology [5] and engineering (e.g., [3]). As part of this, we
developed an engineering methodology for self-aware and self-
expressive computing systems, including a general reference
architectural framework, able to be adapted to a wide range
of applications. In Section III, we describe our work to apply
this methodology, in particular concretizing the reference
architectural framework for the autonomous coordination of
nodes in a multi-camera network.

This framework embodies various concepts from self-
awareness theory. One important one is that self-awareness can
be an emergent property of collective systems, even when there
is no single component with a global awareness of the whole
system [6]. This is a key observation which can contribute to
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Fig. 1: The architecture of a self-aware and self-expressive
camera node composed by six building blocks.

the design of self-aware systems: one need not require that
a self-aware system has a node with global knowledge. Also
in this framework, the term self-expression is used to refer to
behavior based on self-awareness, and can also be considered
both at the node level [3] and collective level [7].

There are several clusters of research in computer science
and engineering which have used the term self-awareness
explicitly [5]. However, our work represents the first holis-
tic framework for describing and benchmarking the self-
awareness properties of computational systems, and the ben-
efits that computational self-awareness can bring. While we
use a specific application context, as has been done in related
work [8], [9], our work also generalizes this idea. Indeed,
this article demonstrates the notion of computational self-
awareness in our work on smart camera networks.

III. APPLICATION DESIGN WITH SA&SE BUILDING
BLOCKS

We apply our generic architectural patterns [3] to develop a
flexible SA&SE multi-camera application. The key approach
here is to instantiate dedicated software components and
their interactions. These components serve as distinct building
blocks for the concrete multi-camera tracking application in
our case. Fig. 1 depicts the overall architecture of a self-aware
and self-expressive camera node contributing to the multi-
camera tracking application. Each building block has specific
objectives and interacts with other blocks in the network. Self-
awareness is realized by individual blocks for Object Tracking,
Resource Monitoring, and Topology Learning. Instead of re-
lying on predefined knowledge and rules, these blocks utilize
online learning and maintain models for the camera’s state and
context. These models serve as input to self-expression which
is composed of the Object Handover and the Strategy Selection
blocks. Finally, the Objectives & Constraints block represents
the camera’s objectives and resource constraints, where both
have a strong influence on the other blocks.

We can compose a truly decentralized, self-aware and
self-expressive camera network by aggregating our camera
nodes. The building blocks of each node can be implemented
by diverse algorithms from computer vision, online learning
and decision making. However, resource awareness was one
guiding principle for our design. Thus, all building blocks
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must be able to execute in real-time on our resource limited
embedded camera platforms.

A. Object Tracking
This building block employs a simple appearance-based

approach for visual object tracking. The chosen method fulfills
the cameras’ computational resource and real-time require-
ments and achieves for the given test environment an accept-
able level of robustness against dropped frames, occlusions
and disappearance of objects.

In a first step, we identify foreground pixels in each camera
by comparing the camera image to a background image
that each camera learns individually about its field of view.
This approach assumes in its simplest form static cameras.
Foreground constitutes moving objects that comprises objects
of interest that should be tracked. These foreground pixels
are then grouped into candidate objects based on their con-
nectedness. In a second step, we perform an association of
these candidate objects to a template database that contains
the objects of interest. To this end, we employ a measure
of similarity according to [10] that we also interpret as the
confidence in the validity of the association.

It is important to note that the approach does not aim to
compete with the state of the art in visual multi-camera object
tracking targeting general environmental conditions. Instead,
the method serves as an exemplary implementation of a self-
aware object tracking building block, sufficient to validate the
SA&SE framework.

B. Object Handover
To coordinate the object tracking responsibilities in the

camera network, we apply a novel market-based handover
approach [11]. Here, the cameras treat object tracking re-
sponsibilities as goods, providing some utility over time. The
cameras can decide in a self-expressive manner on their own
when to ”sell” tracking responsibilities to other cameras using
virtual auctions. Whenever a camera decides to sell an object,
it initiates an auction for this particular object by transferring
an object description to the other cameras. The receiving
cameras search their own FOV for the object and value the
object based on detection confidence and visibility. These
cameras return their valuation as a bid. The auctioneering
camera selects the highest bidder and transfers the tracking
responsibility. We use the Vickrey auction mechanism, which
sells the good to the highest bidder for the second highest
price, to make truthful bidding the dominant strategy among
the participating cameras. Fig. 2 illustrates the key steps of
the market-based handover which is a fully decentralized
mechanism relying only on autonomous decisions of cameras.

An important question for the selling camera is to whom to
send the auction invitations. Without any a priori knowledge
about the network topology, invitations could be broadcasted
to all cameras. By following this strategy the “best” camera
for taking over the tracking responsibility will receive an
invitation (and may respond with the highest bid). However,
the broadcast strategy causes a significant communication and
computation load, i.e., because each camera has to perform an
object detection after receiving the invitation.

C. Topology Learning

If the auctioneering cameras are aware of the potentially
“best” cameras in their neighborhood, this knowledge can be
exploited to significantly reduce the overhead. Such topolog-
ical information can be initially assigned to the cameras or
computed by means of multi-camera calibration during the
deployment of the camera network. However to improve self-
awareness, we learn the topology by observing the bidding
behavior of cameras over time. Each camera individually keeps
track of their local neighbors and uses artificial pheromones to
express the likelihood of a handover to that camera. Whenever
a handover has taken place, the artificial pheromone to the
succeeding camera is strengthened. If no trading occurs,
pheromones evaporate over time. This mechanism enables
each camera to deal with network uncertainties and to adapt
to changes in their neighborhood topology, e.g., caused by
adding, removing or failure of cameras or changes in the
movement pattern of the objects.

We exploit the learned neighborhood topology by three
different communication strategies for the handover: broadcast
auctions to all cameras (BROADCAST), a smooth probabilis-
tic multicast (SMOOTH) and a threshold-based probabilistic
multicast (STEP) [11]. The SMOOTH strategy sends auction
invitations to all neighbors with probability normalized to
the current pheromone level. The STEP strategy sends invita-
tions to all neighbors with pheromone level above a certain
threshold and to neighbors below the threshold with some
(low) probability. We further distinguish whether to send out
invitations at regular intervals (ACTIVE) or only when the
object is about to leave the FOV (PASSIVE). We then end
up with six different self-expressive handover strategies by
combining the approach on whom to invite and when to send
out the invitations. Obviously, the selected strategy influences
the achieved tracking utility as well as communication and
computational overhead.

D. Strategy Selection

While the six handover strategies allow to trade off commu-
nication overhead against tracking utility and hence influence
the behavior of the network, selecting a strategy is a difficult
decision. The performance of each strategy strongly depends
on factors such as the placement of the cameras, the movement
patters of the objects and the object tracking algorithm. In prin-
ciple, we can follow three approaches for strategy selection: (i)
a homogeneous selection, where all cameras select the same
strategy at deployment time, (ii) a heterogeneous selection,
where the cameras can select their strategy individually at
deployment time, and (iii) a dynamic selection, where each
camera can select its strategy during runtime.

We use online learning algorithms, specifically multi-armed
bandit problem solvers within each camera to learn the
appropriate strategy for each node during runtime. Bandit
solvers balance exploitation behavior, where a camera achieves
high performance by using its currently known best strategy,
with exploration, where the camera explores the effect of
using other strategies to build up its knowledge [12]. We use
standard bandit-solvers from the literature, namely Softmax,
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Fig. 2: Illustration of the market-based handover approach: An object of interest is tracked by camera c2 indicated by the green
FOV (a). c2 initiates an auction (black arrows) for the object when it is about to leave the FOV (b). Cameras c3 and c4 detect
the object in their FOVs (orange) and return bids (black arrows) based on their object valuation to c2 (c). c3 has offered the
highest bid and wins the auction (d). The tracking responsibility is transferred from c2 to c3 (black arrow) and an artificial
pheromone is added (indicated as red line between c2 and c3).

Epsilon-Greedy and UCB1. Dynamic strategy selection leads
to another level of self-aware and self-expressive behavior of
the camera network and is able to achieve a more Pareto
efficient global performance than with any static selection.

E. Resource Monitoring

Resource monitoring is an important aspect of computa-
tional self-awareness, and its main objective is to observe the
available resources on the camera nodes. The monitored data
is further used to build up models of resource consumption for
each task a camera is capable of performing. This information
allows a self-expressive block (e.g., strategy selection) to
reason not only about the performance of each task but also
about its respective resource consumption. In our network,
we currently monitor required processing power, available and
allocated memory, and network traffic.

F. Constraints and Objectives

Each camera has some constraints and objectives which
need to be considered for self-aware and self-expressive oper-
ation. In our system constraints specify some limitations of the
available resources (processing, memory and networking) and
help to decide on whether to bid for an object. On the other
hand, objectives are related to the behavior of the cameras
and specify, for example, some quality of service parameters
or specific tasks the cameras should achieve.

IV. SMART CAMERA NETWORK

A. Experimental Study: Camera Network Setup

Fig. 3 depicts the setup of the smart camera network used
for our experimental study. Four cameras (1–4) are mounted
in a laboratory room with overlapping FOVs. Cameras 5 and
6 are placed in the corridor and lounge area, respectively.
Our heterogeneous network is composed by different hardware
platforms. Cameras 1 to 4 are equipped with Atom processors
and connected via wired Ethernet. Cameras 5 and 6 are
based on Pandaboards equipped with ARM processors and
use WiFi for communication. All cameras run standard Linux
and a distributed publish-subscribe middleware system [13] to
provide a flexible software platform for software development.
The building blocks have been implemented in C++ and C#
using the middleware services for communication and control.

B. Tracking Results

For the evaluation of our object tracking block we use the
smart camera network with various people walking through
the indoor environment (as depicted in Fig. 3). We apply
state-of-the-art metrics (e.g., [14]) for the evaluation. Fig. 4(a)
summarizes the results of a typical scenario of concurrently
tracking three selected persons independently walking around
in the indoor environment for around 120 seconds. During
this scenario, the persons were not continuously visible to all
cameras; at some points, participants were not seen by any
camera at all. The cameras mounted in the laboratory achieved
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Fig. 3: The illustration above shows the smart camera network composed of six cameras deployed in an indoor environment.
The cameras are depicted by a black camera symbol and their FOVs are indicated by orange lines. Snapshots of six cameras
are indicated by blue lines. Those images show the status of object tracking over time; three people are tracked by the system
marked by red, blue and green bounding boxes.

better detection and tracking results. The performance of
cameras 5 and 6 degraded slightly due to moderate changes
in lightning and object appearance. Overall, the experimental
results show sufficient performance of the object tracker for
correct object handover in the given test environment.

C. Topology Learning

Through our self-aware topology learning block each in-
dividual camera builds up a local neighborhood relationship
graph. Fig. 4(b) shows the aggregated graph for the entire
network after a test run in our smart camera network. The
thickness of the red lines indicate the strength of the artificial
pheromone deposit on this link which corresponds to the
probability of an object transiting between the connected
cameras. Initially, links are created between the camera in the
lounge (camera 6) and those in the laboratory (cameras 1-4)
due to misdetections of camera 5. Through the evaporation
of the artificial pheromones, cameras can not only deal with
errors induced by the tracking block but also with changes in
the topology due to hardware errors or vandalism. Over time
these links evaporate and a qualitatively correct neighborhood
graph emerges.

D. Communication and Utility Trade-off

We evaluated the effect of the handover strategy on the
overall tracking utility and communication overhead. Fig-
ure 5(a) depicts the trade-off of utility and communication
for homogeneous strategy selection in our smart camera

network. The utility is defined as the aggregated tracking
utility of all cameras, and the communication is defined as
the number of all sent auction messages during the entire
tracking operation. Both utility and communication values are
normalized by those from the ACTIVE BROADCAST strategy.
The six strategies result in six different trade-offs for utility
and communication.

Figure 5(b) compares the achieved trade-off for homo-
geneous, heterogeneous and dynamic strategy selection in
our CamSim1 simulation tool [12]. Obviously, heterogeneous
selection (black crosses) leads to many more outcomes in the
objective space. The extension of the Pareto efficient frontier
brought about by heterogeneity is also apparent. However, it is
also clear that the outcomes of many heterogeneous strategies
are dominated, and many are strictly worse than the original
outcomes from the homogeneous strategies. We can clearly
see the benefit of self-expressive behavior. Dynamic strategy
selection, here implemented using reinforcement learning (col-
ored symbols), is able to outperform the static (homogeneous
und heterogeneous) strategies and to extend the Pareto front.

V. CONCLUSION

As demonstrated in this paper, self-awareness and self-
expression are fundamental concepts for developing camera
networks capable of learning and maintaining their topology,
distributedly performing object detection and tracking han-
dover as well as autonomously selecting strategies to achieve

1http://www.epics-project.eu/CamSim/
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Fig. 4: Results for object tracking and topology learning for concurrently tracking three selected persons for around 120
seconds. The table (a) shows the sensitivity of object detection and the correct detected tracks (CDT) for each camera. The
graph (b) shows the learned topology after 60 seconds by exploiting the trading behavior. The thickness of the red line indicates
the pheromone level of the link.
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Fig. 5: Performance for two exemplary scenarios from our smart camera network (a) and our simulation environment (b)
showing homogeneous (red and yellow squares), heterogeneous (black crosses), and dynamically learned strategy assignments
(colored symbols, representing different reinforcement learning strategies evaluated). The results have been normalized by the
maximum value of the ACTIVE BROADCAST strategy and are averages over 30 runs with 1000 time steps each [12].

more Pareto efficient outcomes. The entire processing is en-
capsulated into six building blocks embedded onto resource-
limited smart camera nodes and aggregated into a completely
decentralized and thus scalable network. However, compu-
tational self-awareness and self-expression is not limited to
camera networks. In fact, we are confident that SA and SE
could serve as an enabling technology for future systems and
networks meeting a multitude of requirements with respect to
functionality, flexibility, performance, resource usage, costs,
reliability and safety.
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