
Secure Embedded Visual Sensing
in End-User Applications with TrustEYE.M4

Thomas Winkler
Institute of Networked and Embedded Systems

and Lakeside Labs
Alpen-Adria-Universität Klagenfurt

Lakeside Park B02b, 9020 Klagenfurt
Email: thomas.winkler@aau.at

Bernhard Rinner
Institute of Networked and Embedded Systems

and Lakeside Labs
Alpen-Adria-Universität Klagenfurt

Lakeside Park B02b, 9020 Klagenfurt
Email: bernhard.rinner@aau.at

Abstract—Sensor networks are becoming popular for appli-
cations in private environments such as home monitoring, baby
and child monitoring or ambient assisted living. What is often
overlooked is the fact that data collected in this context can be
very privacy sensitive. This is especially true if images or videos
are captured and streamed into the cloud. This work presents a
visual sensor network device along with a secure data delivery and
archiving solution using untrusted public cloud storage services.
This is achieved by extending the sensing device with a local
communication interface for establishing a secure link between
data producer and consumer. Our custom-designed TrustEYE.M4
prototype implements secure data delivery and uses Near Field
Communication (NFC) for the initialization of the communication
link. The presented solution is not limited to visual sensing
applications but can be applied to a wide range of pervasive
sensing and data delivery scenarios.

I. INTRODUCTION

Traditional applications of smart cameras [1] include,
e.g., surveillance [2] or traffic monitoring [3], [4]. With the
emerging domain of consumer-centric and pervasive IoT ap-
plications, visual sensor networks and intelligent cameras are
deployed in smart homes [5], for baby and child monitoring
or in assisted living applications [6], [7]. In existing cloud-
based video recording solutions such as dropcam [8], data
security is considered for the communication channel (data
in transit) but not while data is stored (data at rest). This
means that the operator of the cloud-based online storage
has to be trusted not to manipulate or disclose sensitive
data. In this work we present a wireless, embedded visual
sensing device called TrustEYE.M4 which is ideally suited
for monitoring applications in today’s Internet of things. A
primary design aspect for TrustEYE.M4 was to make data
security and privacy protection integral features of the sensing
device itself. The capabilities of the system are demonstrated
in an event-triggered, cloud-based video delivery application
where a trust relationship between the camera and the client
device is established via local, Near Field Communication
(NFC).

The contribution of this work is threefold. (1) We present
the hardware and software architecture of the custom-designed
TrustEYE.M4 which is a versatile state-of-the-art research plat-
form for security-centric monitoring and visual sensor network
applications. (2) We discuss a practical solution for securely
using cloud storage for delivery and archiving of potentially

sensitive video data. This approach does not imply security of
the cloud storage, but data protection is applied before any data
leaves the embedded camera device. NFC is used to securely
establish the link to data recipients. (3) We demonstrate the
system’s capabilities and evaluated its performance with a real-
time event-monitoring and video delivery application, which
provides hardware-based data encryption and non-repudiation
guarantees based of the on-board TPM security chip.

The remainder of this paper is organized as follows.
Section II discusses related work on embedded smart camera
systems and gives an overview of camera- and sensor-centric
security approaches. Thereafter, Section III discusses our solu-
tion for secure cloud-based data delivery for IoT applications.
Section IV presents the hardware and software architecture of
the TrustEYE.M4 sensing platform. In Section V we discuss
the implementation of the secure, cloud-based data delivery
case study and present evaluation results. Finally, Section VI
summarizes the paper and gives an outlook to future work.

II. RELATED WORK

In this section we present related work in the areas of visual
sensor network (VSN) platforms as well as approaches for
camera and sensor-level security. A more complete review of
this topic is provided in [9].

An early VSN device example with limited resources is
Cyclops by Rahimi et al. [10], [11]. It is equipped with an
ATmega128 8-bit RISC microcontroller clocked at 7.3 MHz.
It provides 4 kB of on-chip SRAM and 60 kB of external
RAM. The CMOS sensor delivers RGB images at CIF res-
olution. For image capturing a CPLD between the sensor
and the microcontroller is used. Cyclops does not have on-
board networking facilities but it can be attached to a MicaZ
mote. CmuCAM 4 [12] is the latest version of a camera
designed for robotics applications. It performs on-board image
processing and analysis (e.g., color tracking, mean, and median
computation, segmentation) at 160×120 pixels. It is powered
by a P8X32A (Propeller) CPU and uses an OV9655 sensor.
The WiCa wireless camera [13] is based on a single instruction,
multiple data (SIMD) processor called Xetal-II [14] clocked
at 80 MHz. The processor features 320 RISC processing units
which perform line-based, parallel image processing. For gen-
eral purpose tasks an 8051 microcontroller is used and an
802.15.4 radio serves for inter-node communication. The CIT-
RIC platform by Chen et al. [15] is equipped with a PXA270

CPU clocked at 624 MHz and 64 MB of RAM. Consequently,
it facilitates the implementation of more complex computer
vision algorithms. Mohanty [16] describes a secure digital
camera system that is able to provide integrity, authenticity
and ownership guarantees for digital video content. This is
achieved using a combination of watermarking and encryption
techniques. Due to the high computational effort, a custom
hardware prototype based on an FPGA is used to meet the real-
time requirements. PrivacyCam [17] is a camera system based
on a Blackfin DSP clocked at 400 MHz, 32 MB of SDRAM
and an Omnivision OV7660 color CMOS sensor. Regions of
interest are identified based on a background subtraction model
and resulting regions are encrypted using an AES. Mohanty
and Adamo [16], [18] follow this approach and describe a se-
cure digital camera system that provides integrity, authenticity,
and ownership guarantees via watermarking and encryption. A
binary watermark is encrypted with a user-supplied key before
it is embedded into the image. An FPGA-based prototype
demonstrates the feasibility of the approach under real-time
conditions. De Strycker et al. [19] use a TriMedia digital signal
processor to embed an invisible, digital watermark into video
frames in real-time. The watermark consists of a pseudo-noise
pattern that depends on a secret key. The system is evaluated
in the context of a video broadcasting application where it
provides authenticity guarantees for delivered video streams.
Stifter et al. [20] suggest to integrate a secure storage for
a symmetric, cryptographic key into the image sensor. This
key is used in an on-chip crypto unit as part of message
authentication code (MAC) computations. The system provides
integrity and authenticity guarantees for delivered data.

III. SECURE SENSING CONCEPT

This section first presents our secure sensing solution which
relies on public cloud storage. The second part of the section
summarizes the achieved security properties and discusses
underlying assumptions and limitations.

To illustrate our secure sensing concept, we have chosen
a specific scenario where an embedded camera is used for
private home monitoring. However, the presented approach is
not limited to visual sensors but can be applied to any sensing
application. To keep the cost for the camera device as low
as possible we do not assume the availability of permanent
storage for videos on the camera itself. As shown in Figure 1,
we rely on existing cloud-based storage solutions for long-term
data archiving and retrieval via mobile, Internet-enabled user
devices. To limit the amount of transmitted data, we perform
on-board event detection (e.g., motion detection, behavior
analysis, . . .) which triggers the upload of video footage to the
cloud. What sets our approach apart from existing solutions is
that data security is an integral part of the sensing device. For
all data that is uploaded to the cloud we ensure non-repudiation
(integrity, authenticity, and timestamping) and confidentiality
for the entire data lifetime and not only for data in transit. Data
can be accessed only via authorized user devices (e.g., tablets,
mobile phones). A critical aspect is the establishment of the
link between the camera and the user’s mobile device. In the
initialization phase shown in Figure 1 we assume that the user
installs the camera in the desired location. Having physical
access to the camera allows the user to use the NFC interface
of the camera to securely establish a link between the camera
and the mobile device. Since this process is entirely local

Cloud Storage

NFC-based exchange of
cryptographic keys and certificates

Handheld Device

Camera Device

Handheld DeviceCamera Device

On-board mechanisms for
data confidentiality

and non-repuditation

Data decryption and validation
using cryptographic keys and
certificates obtained via NFC

O
p

e
ra

ti
o

n
In

it
ia

li
za

ti
o

n

Event-triggered
data delivery

On-demand data
access with

optional push
notification

Fig. 1. In the initialization phase, local NFC-based communication is used
to deliver required cryptographic keys and certificates to the user’s mobile
device. During operation, the camera uploads digitally signed and encrypted
data to a cloud service from where they can be retrieved by users. Data upload
is event-triggered (e.g., motion detection).

without involving any Internet communication, it is ensured
that cryptographic keys used to provide data confidentiality
are not disclosed to third parties.

Our TurstEYE.M4 prototype (cp. Section IV) is equipped
with a Trusted Platform Module (TPM) security chip. It is used
for providing non-repudiation guarantees for images, videos
and event descriptors based on TPM-protected, non-migratable
2048bit RSA keys. In the initialization phase of the camera,
the TPM’s owner password has to be set. The TPM’s public
endorsement key (EK) certificate is made available to the
user via NFC. After validation of the EK certificate the user
chooses an owner password, encrypts it with the public EK and
supplies it to the camera via NFC. The camera executes the
TPM’s TakeOwnership function and initiates the creation of
an attestation identity key (AIK) with the user’s mobile device
acting as local PrivacyCA. With this AIK the camera certifies
the signing key κSIG and the mobile device is able to validate
this certificate. Finally, the WiFi credentials are set via NFC
and the camera can now connect to the Internet.

Once the camera is operational it initiates the event-
triggered data upload. Before upload, AES256 encryption of
video frames is performed using the hardware accelerators
of the STM32F417 CPU. A shared AES256 key, created by
the camera and exchanged via NFC during initialization, is
used. Singing and timestamping are done with the TPM’s
TickStampBlob function. The individual steps are as follows:

1) CAM: Event detected (e.g., via motion threshold)
2) CAM: Encrypt captured frames:

encFrm[i] = ENCκAES (frm[i]).

3) CAM: Compute hash-chains for frame groups which are
signed and timestamped with a non-migratable TPM key:
sigFrmGrp = TICKSTAMPκSIG(

H(frm[n : m])||H(encFrm[n : m])).

4) CAM −→ CLOUD: Upload of encrypted and digitally
signed frames

5) MOBILE←− CLOUD: On-demand delivery of encrypted
and signed frames

6) MOBILE: Validate κSIG using κAIK
7) MOBILE: If data verification is successful, decrypt and

show the frames

Note that we only provided a high-level description of
the used TPM security functions. An in-depth description of
such an approach including details on TPM setup, signing and
timestamping of frame groups as well as extended functionality
such as trusted boot is given in [21]. Subsequently we discuss
the achieved security properties together with the involved
limitations and assumptions.

A. Security Properties

• Data non-repudiation. All image, video and event
data delivered by the camera via the cloud comes with
non-repudiation guarantees provided via hardware-
protected (TPM) security features.

• Data confidentiality. All image, video and event
information is encrypted on-camera, thereby ensuring
confidentiality and privacy protection. Advanced ver-
sions of the system could support different protection
levels as discussed in [22].

• Protection lifetime. Non-repudiation and confiden-
tiality guarantees hold for the entire data lifetime
starting from the point the data is created on the
camera. Therefore, protection includes data in transit
as well as data at rest. Protecting all data before it
leaves the camera means that no trust assumption must
be made for the cloud service provider w.r.t. data
confidentiality and data integrity.

• Secure link establishment. A trusted, local connec-
tion (NFC) between the camera and the user’s mobile
device is used to exchange cryptographic keys and
establish the link between the communication partners.
Other parties such as the cloud service provider do not
get access to the locally exchanged information.

B. Assumptions

• Network connectivity. We assume that Internet con-
nectivity for the camera is available via, e.g., WiFi.

• Cloud storage access. We assume that access to a
cloud storage facility exists and sufficient space is
available for the upload of images and videos. Ideally,
the cloud service supports push notifications if new
content is added. Note that we do not impose special
security requirements on the cloud service.

• Limited physical access. Access to content produced
by the camera is granted to any user who is able to
establish a link via NFC by having physical access to
the camera. For a consumer-class monitoring applica-
tion (e.g., a camera installed in a private house with

limited physical access) this is sufficient. If required,
the authorization process can be extended by a second
factor (e.g., a PIN or password).

C. Limitations and Threats

• Denial of service. The cloud service provider does not
get access to plaintext data and potential modifications
are detected on the user’s mobile device. However,
we do not provide countermeasures against denial
of service attacks. A cloud service can disrupt the
system’s functionality by, e.g., deleting uploaded data
or blocking downloads.

• Mobile device security. The mobile device used for
data access is assumed to be trustworthy. Protecting
the mobile device is not within the scope of this work.
It must be noted that a malicious mobile device could
break the system’s security by disclosing sensitive
information received from the camera via NFC.

• Camera firmware attacks. In the current system the
camera does not expose any services (i.e., open net-
work ports) via WiFi which reduces the risk for remote
exploits. Nevertheless, extended protection measures
such as secure boot and Flash memory write protection
should be considered to protect the camera’s firmware.

• Side channel attacks. Since uploads to the cloud
service are event triggered the communication pattern
of the camera is a potential side channel that leaks,
e.g., whether or not somebody is at home. Adding
randomized transmission of dummy data is a simple
measure to mitigate this problem.

• NFC communication distance. The locality of NFC
communication is important for the system’s security.
An attacker using a sophisticated antenna configura-
tion might be a security risk if an attacker is able to get
close enough to the camera. Assuming that the camera
is installed in a physically protected environment (e.g.,
a residential house) this risk is relatively low.

IV. PROTOTYPE SYSTEM ARCHITECTURE

This section presents the hardware and software architec-
ture of the TrustEYE.M4 sensing platform.

The TrustEYE.M4 CPU board (Figure 2) is a custom-
designed, 50×50 mm, two layer printed circuit board equipped
with an ARM Cortex M4 STM32F417 microcontroller with
192 kB on-chip SRAM and 1 MB on-chip Flash memory. Since
the on-chip SRAM is insufficient to store multiple images and
intermediate results of CV algorithms, 4 MB of external SRAM
are added. Data transfers from the image sensor module to
SRAM and from SRAM to other peripherals are implemented
via the microcontroller’s DMA engines such that the CPU
itself is available for image analysis tasks. Figure 3 presents
an overview of the core components of the processing board.
The system is powered either via Micro-USB or a single-
cell lithium polymer battery which is charged automatically if
external power is available. The system can be programmed via
the Micro-USB port. Figure 2 illustrates the modular design of
the TrustEYE.M4 CPU board. The image sensor (Omnivision
OV5642) is connected via a dedicated port and can be easily

2MB SRAM
(additional 2MB on bottom)

OV5642 Sensor
Module

Cortex M4 CPU
STM32F417 (168MHz)

FTDI USB to Serial Status LEDs

2x15pin Extension Headers
(2.54mm spacing)

SWD Connector

LiPo Battery Connector

Bottom Side (not visible):
2MB SRAM, TPM Security IC, Power Management IC
(LiPo Charger), Micro USB Connector, Reset Button

Fig. 2. The 50×50 mm TrustEYE.M4 CPU board with an OmniVision
OV5642 image sensor module.

Micro USB

- programming
- debugging
- power supply
- Lipo Charging

Single-Cell LiPo
Battery

2x 15pin extension headers (I2C, SPI, …)

SWD/SWV

Debug + Trace

RaspberryPI
Connector

(SPI)

Image
Sensor

Connector

T r u s t E Y E . M 4 C o n n e c t i v i t y

Cortex M4
STM32F417

Ext. SRAM 0

Ext. SRAM 1

Power
Management

Serial to USB

Trusted Platform
Module

T r u s t E Y E . M 4 C o r e C o m p o n e n t s

Fig. 3. The core components of the TrustEYE.M4 CPU board consist
of a Cortex M4 CPU (STM32F417) clocked at 168 MHz, 4 MB of SRAM,
an ST33TPM12SPI security IC, a BQ24074 power management IC and a
FT230xs USB to serial converter. Several connectivity options are imple-
mented via breakout headers.

exchanged. Two 15 pin headers provide access to on-board
buses such as I2C and SPI as well as to GPIO pins of the
microcontroller. Wireless networking is implemented via an
extension board with a Redpine Signals RS9110-N-11-24-02
WiFi 802.11b/g/n radio which can be seen in Figure 5. NFC
is added via an M24LR dual interface EEPROM chip which
can be written and read by the camera’s microcontroller over
I2C or via an integrated ISO 15693 compliant RF interface.

For enhanced system security, TrustEYE.M4 provides
hardware accelerators for cryptographic algorithms including
AES256, SHA1, SHA256 and HMAC. Furthermore the SoC
provides a true random number generator and a 96-bit unique
ID. The on-board ST33TPM12SPI TPM chip provides RSA
key generation (2048 bits), RSA signature creation and encryp-
tion, secure monotonic counters, remote attestation capabilities
and comes with an endorsement key certificate.

CMSIS Libraries STM32 Standard Peripheral Library FreeRTOS

TrustEYE.M4 Drivers
TrustEYE.M4 Hardware

Abstraction and
Configuration

TrustEYE.M4 Application Framework

Task 1 Task 2 Task N
. . .

Fig. 4. The TrustEYE.M4 software architecture including drivers, a hardware
abstraction and configuration layer and a framework for application tasks.

Figure 4 presents an overview of the TrustEYE.M4 soft-
ware architecture consisting of (1) the libraries and drivers, the
FreeRTOS1 real-time operating system and the TrustEYE.M4
hardware abstraction and configuration component. The Trust-
EYE.M4 application framework provides multi-tasking support
via synchronized double-buffered queues such that bulk data
transfers via DMA do not block other tasks.

V. CASE STUDY AND EVALUATION

Figure 6 shows the prototype consisting of the Trust-
EYE.M4 CPU board, the WiFi extensions board on top of
it and the M24LR-discovery NFC board. An NFC-enabled
Nexus 4 smartphone is used as mobile device. In initialization
phase the camera makes the TPM’s endorsement key certificate
available via the M24LR EEPROM which is read by the smart-
phone app via NFC. The certificate enables the smartphone app
to supply an encrypted TPM owner password and subsequently
act as local PrivacyCA for AIK creation. NFC is used also for
transmission of the AES256 encryption key which is stored in
the smartphone’s password-protected keystore.

Fig. 5. TrustEYE.M4 prototype with the WiFi extensions board and a
M24LR-discovery board (red PCB) with dual interface EEPROM attached
via I2C. A Nexus 4 smartphone with integrated NFC reader is used as mobile
device.

The secure cloud-based video delivery application from
Section III is broken down into four tasks running on the
TrustEYE.M4 software framework. The sensor task initially
configures the OV5642 image sensor. Thereafter, pairs of JPEG
(640×480) and YUV422 (320×240) frames are read from
the sensor via DMA. The next task is the application’s main
processing task which first parses JPEG and YUV422 data
which is delivered by the sensor in interleaved format. The

1FreeRTOS website: http://www.freertos.org/ (last visited: December 2014)

T u r s t E Y E . M 4 V i d e o D e l i v e r y A p p l i c a t i o n

Sensor Task

Read JPEG +
YUV422 from

Sensor
(involving DMA)

Processing Task

Split JPEG and
YUV422 image

Multi-Modal Mean
Motion Detection

Conditional
Forwarding

(Motion Thresh.)

Security Task

Encrypt and
Digitally Sign
JPEG frames

(involving DMA)

WiFi Task

Data Transmission
(involving DMA)

Double
Buffer

Double
Buffer

Double
Buffer

Fig. 6. TrustEYE.M4 video delivery application. JPEG (640×480) and YUV422 (320×240) frame pairs are read from the sensor via DMA. Foreground
is determine by multimodal mean and object bounding boxes are computed. Based on the amount of detected motion, the JPEG images are encrypted and
authenticity, integrity and freshness are ensured via the TPM’s TickStampBlob operation. Finally, the results are sent to the cloud storage.

Runtime
JPEG/YUV422 parsing 9.2 ms
Multimodal Mean (4 Cells) 41.8 ms
Bounding Box Calculation 4.8 ms
SHA1 Computation 1.2 ms
AES256 Encryption 1.7 ms
Total 58.7 ms

TABLE I. RUNTIMES (AVG. OVER 100 FRAMES) FOR THE INDIVIDUAL
STEPS OF THE PROCESSING PIPELINE SHOWN IN FIGURE 6. AES256 AND

SHA1 ARE FOR AN AVERAGE DATA SIZE OF 40 KB.

YUV422 image is processed by a motion detection module
that implements a variant of the multimodal mean background
modeling techniques proposed by Apewokin et al. [23]. For
each pixel position a set of possible average background pixel
values is stored and current pixel values are compared to
these potential background pixels. If there is no match the
pixel is declared foreground and a new possible background
pixel value is added to the background model. The resulting
binary foreground image is post-processed and if the amount
of motion is above a predefined threshold the JPEG image is
handed over to the security task. It uses the hardware crypto
engines of the microcontroller for data encryption (AES256).
Non-repudiation guarantees for images are implemented using
the TPM’s signing and timestamping features. Note that we
timestamp frame groups to ensure proper frame order. Finally,
the data is handed over to the WiFi task. The WiFi module
comes with an on-chip TCP/IP stack such that no network
stack is required on the main CPU. All bulk data transmission
to the WiFi module is implemented via DMA transfers.

With the processing pipeline from Section V, Trust-
EYE.M4 delivers an encrypted and digitally signed Motion-
JPEG stream at a resolution 640×480 pixels at approxi-
mately 16 fps. Subsequently we consider additional aspects
such as task runtimes, memory usage and power consumption.
Table I shows the runtimes (average over 100 frames) for
the individual processing steps of the video delivery appli-
cation. Processing is performed on YUV422 images with
a resolution of 320×240 pixels. Reading images from the
sensor and transferring the final results to the WiFi module
is implemented via DMA transfers. Therefore, they are not
included in Table I. Parsing the interleaved JPEG/YUV422
image data takes about 9 ms. Foreground computation takes
on average 41.8 ms. For comparison, a simpler foreground
detection approach based on a single running average takes
17 ms. Bounding box calculation is performed in less than

Memory Usage
Sensor Output (Dbl. Buffer) 2×225 kB
Thumbnail 75 kB
JPEG (Dbl. Buffer) 2× 75 kB
Background 10 kB
Multimodal Mean (4 Cells) 4×225 kB
Heap 30 kB

Total 1615 kB

TABLE II. MEMORY CONSUMPTION FOR THE INDIVIDUAL
COMPONENTS OF THE PROCESSING PIPELINE SHOWN IN FIGURE 6.

Input Current @ 3.3V
STM32F417 CPU 98 mA
SRAM 23 mA
OV5642 Sensor 156 mA
WiFi (TX) 140 mA
TPM 21 mA

Total 438 mA

TABLE III. INPUT CURRENTS TO THE INDIVIDUAL COMPONENTS
WHEN EXECUTING THE PROCESSING PIPELINE SHOWN IN FIGURE 6.

5 ms. SHA1 computation and AES256 encryption contribute
only little to the overall runtime of 58.7 ms per frame. The
TPM TickStampBlob operation takes 172 ms which is too long
for signing individual frames. Since we want to ensure correct
frame order, we sign and timestamp hash chains of groups of
25 frames. The TPM operates in parallel to the main CPU and
its runtime is therefore not included in Table I. Overall runtime
leads to a theoretical frame rate of 17 fps. The difference to
the previously mentioned 16 fps can be explained by overheads
for interrupt handling, DMA setup etc. which not covered in
Table I.

Memory requirements for the individual components are
presented in Table II. Double-buffered communication between
tasks is noted with the respective elements in the table. The
’Heap’ memory entry represents memory used for management
purposes and includes also data structures used internally by
FreeRTOS. Not included in the table is stack memory for
which the internal SRAM of the microcontroller is used. With
1615 kB, memory usage is well below the available 4 MB of
external SRAM. The size of the application binary that is
stored in the microcontroller’s Flash memory is 61 kB (com-
piled with GNU GCC using -Os optimization). The achieved
WiFi datarate of 9.8 Mbit/s is sufficient for the framerate and
the amount of data that can be handled by TrustEYE.M4
CPU. Finally, Table III presents the average currents drawn by
individual hardware components of TrustEYE.M4. The CPU

(STM32F417) draws 98 mA, the SRAM 23 mA, the TPM
21 mA and the WiFi module draws 140 mA. The 156 mA
drawn by the OV5642 are higher than the current drawn by
any of the other components. The high power consumption of
514.8 mW is responsible for more than a third of the platform’s
1.45 W total power consumption. Contrary to the image sensor,
the relatively high power consumption of the WiFi module is
not unexpected. Based on the detected motion the WiFi module
could be turned on only if required and thereby substantial
power savings can be achieved.

VI. SUMMARY AND OUTLOOK

We presented TrustEYE.M4 - a platform for secure sensing
applications. Contrary to previous platforms, security features
have been important design requirements. We demonstrated the
capabilities of TrustEYE.M4 with a home monitoring applica-
tion. NFC-based link establishment between the camera device
and the user’s mobile device enables simple and secure data
delivery via existing cloud infrastructure without implicitly
trusting the cloud service provider.

Ongoing work is divided into research on sensor-level
privacy protection and evolution of the TrustEYE.M4 platform.
In this work privacy protection is achieved by encryption
all image and video data. Depending on the application,
other nuances between full protection (encryption) and full
access to videos might be required. In, e.g., assisted living
applications a third party such as a first responder might need
access to video showing behavioral information to assess a
potential emergency situation. We are exploring cartooning
effects [24] to provide such an intermediate level of protection.
We plan to improve the TrustEYE.M4 platform by integrating a
second, low-power radio for establishing a local mesh network
between multiple sensing nodes without the need for the high-
power WiFi radio. Also related to power-optimization is the
integration of duty-cycling strategies and exploitation of low-
power and sleep modes of the platform’s components.

ACKNOWLEDGMENT

This work is part of TrustEYE: Trustworthy Sensing and
Cooperation in Visual Sensor Networks [25] and is funded by
the European Regional Development Fund and the Carinthian
Economic Promotion Fund (grant KWF-3520/23312/35521).

REFERENCES

[1] M. Reisslein, B. Rinner, and A. Roy-Chowdhury, “Special Issue on
Smart Camera Networks,” IEEE Computer, 2014, (to appear).

[2] A. Cavoukian, “Surveillance, Then and now: Securing Privacy in Public
Spaces,” Tech. Rep., 2013.

[3] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-Time
Video Analysis on an Embedded Smart Camera for Traffic Surveil-
lance,” in IEEE Real-Time and Embedded Technology and Applications
Symposium, 2004, pp. 174–181.

[4] D. Farmer and C. C. Mann, “Surveillance Nation (Part I),” Technology
Review, vol. 4, pp. 34–43, 2003.

[5] M. Brezovan and C. Badica, “A Review on Vision Surveillance
Techniques in Smart Home Environments,” in Proceedings of the
International Conference on Control Systems and Computer Science,
2013, pp. 471–478.

[6] H. Aghajan, J. C. Augusto, C. Wu, P. Mccullagh, and J.-A. Walkden,
“Distributed Vision-Based Accident Management for Assisted Living,”
in Proceedings of the International Conference on Smart Homes and
Health Telematics, 2007, pp. 196–205.

[7] S. Fleck and W. Straßer, “Smart Camera Based Monitoring System and
its Application to Assisted Living,” Proceedings of the IEEE, vol. 96,
no. 10, pp. 1698–1714, 2008.

[8] Dropcam, “Dropcam Website,” 2014, last visited: June 2014.
[9] T. Winkler and B. Rinner, “Security and Privacy Protection in Visual

Sensor Networks: A Survey,” ACM Computing Surveys, vol. 47, no. 1,
p. 42, 2014.

[10] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and
M. B. Srivastava, “Cyclops: In Situ Image Sensing and Interpretation
in Wireless Sensor Networks,” in Proceedings of the International
Conference on Embedded Networked Sensor Systems, 2005, p. 13.

[11] M. Rahimi, D. Estrin, R. Baer, H. Uyeno, and J. Warrior, “Cyclops,
Image Sensing and Interpretation in Wireless Networks,” in Proceed-
ings of the International Conference on Embedded Networked Sensor
Systems, 2004, p. 311.

[12] K. W. Agyeman and A. Rowe, “CMUcam4 Feature List,” Tech. Rep.,
2012.

[13] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera Mote
with a High-Performance Parallel Processor for Real-Time Frame-Based
Video Processing,” in Proceedings of the International Conference on
Distributed Smart Cameras, 2007, pp. 109–116.

[14] A. Abbo, R. Kleihorst, V. Choudhary, L. Sevat, P. Wielage, W. Mouy,
B. Vermeulen, and M. Heijligers, “Xetal-II: A 107 GOPS, 600 mW
Massively Parallel Processor for Video Scene Analysis,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 192–201, 2008.

[15] P. W.-C. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. J.
Lobaton, M. L. Meingast, S. Oh, S. Wang, P. Yan, A. Yang, C. Yeo,
L.-C. Chang, D. Tygar, and S. S. Sastry, “CITRIC: A Low-Bandwidth
Wireless Camera Network Platform,” in Proceedings of the Interna-
tional Conference on Distributed Smart Cameras, 2008, p. 10.

[16] S. P. Mohanty, “A Secure Digital Camera Architecture for Integrated
Real-Time Digital Rights Management,” Journal of Systems Architec-
ture, vol. 55, no. 10-12, pp. 468–480, Oct. 2009.

[17] A. Chattopadhyay and T. E. Boult, “PrivacyCam: A Privacy Preserving
Camera Using uClinux on the Blackfin DSP,” in Proceedings of the
International Conference on Computer Vision and Pattern Recognition,
2007, pp. 1–8.

[18] O. Adamo, S. P. Mohanty, E. Kougianos, and M. Varanasi, “VLSI
Architecture for Encryption and Watermarking Units Towards the
Making of a Secure Camera,” in Proceedings of the Int. System-on-
Chip Conference, 2006, pp. 141–144.

[19] L. De Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker,
M. Maes, and G. Depovere, “Implementation of a Real-time Digital
Watermarking Process for Broadcast Monitoring on a TriMedia VLIW
Processor,” IEE Proceedings - Vision, Image, and Signal Processing,
vol. 147, no. 4, p. 371, 2000.

[20] P. Stifter, K. Eberhardt, A. Erni, and K. Hoffmann, “Image Sensor for
Security Applications with On-chip Data Authentication,” Proceedings
of the Society of Photo-Optical Instrumentation Engineers, vol. 6241,
p. 8, 2006.

[21] T. Winkler and B. Rinner, “Securing Embedded Smart Cameras with
Trusted Computing,” EURASIP Journal on Wireless Communications
and Networking, vol. 2011, p. 20, 2011.

[22] ——, “TrustCAM: Security and Privacy-Protection for an Embedded
Smart Camera based on Trusted Computing,” in Proceedings of the
International Conference on Advanced Video and Signal-Based Surveil-
lance, 2010, pp. 593–600.

[23] S. Apewokin, B. Valentine, L. Wills, S. Wills, and A. Gentile, “Multi-
modal Mean Adaptive Backgrounding for Embedded Real-Time Video
Surveillance,” Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition, pp. 1–6, Jun. 2007.

[24] T. Winkler, A. Erdélyi, and B. Rinner, “TrustEYE.M4: Protecting
the Sensor - not the Camera,” in Proceedings of the International
Conference on Advanced Video and Signal Based Surveillance, 2014,
p. 6.

[25] T. Winkler, “TrustEYE Project Website,” http://trusteye.aau.at, 2012,
last visited: December 2014.

