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Abstract. Enabling robotic systems to collaborate with humans is a challenging task, 
on different levels of abstraction. Such systems need to understand the context under 

which they operate, by perceiving, planning and reasoning to team up with a human. 
The robotic system should also have perspective taking capabilities in order to 

efficiently collaborate with the human. In this work an integrated cognitive 

architecture for human robot collaboration, that aims to develop perspective taking 
capabilities using human preferences, is proposed. This is achieved by developing a 

‘mental model’ that takes human preferences, the knowledge of the task (including 

the objects), and the capabilities of the human and the robot. This mental model 
forms the basis of the cognitive architecture, to perceive, reason and plan in the 

human-robot collaborative scenario. The robotic platform guided by the cognitive 

architecture, performs ‘picking’, ‘showing’, ‘placing’ and ‘handover’ actions on real 

world objects (of interest in the assembly process) in coordination with the human. 

The goal is to answer the ‘how’ (how a manipulation action should be carried out 

by the robot in a dynamically changing environment) and the ‘where’ (where the 
manipulation action should take place) of the assembly process considering/given 

varying human preferences. We show that the proposed cognitive architecture is 

capable of answering these questions through various experiments and evaluation. 

Keywords. Human Robot collaboration, Common Goal, Human Robot Interaction, 

Knowledge representation, task planning, perception and vision in robotics 

1. Introduction 

The concept of robots cooperating with humans has gained a lot of interest in recent years, 

in both domestic and industrial areas. Combining the cognitive strength of humans 

together with the physical strength of robots can lead to numerous applications [3]. For 

example, in industrial scenarios a certain assembly processes requires the worker’s 

strenuous effort of lifting heavy objects, operating in non-ergonomic positions etc., 

which lead to negative long-term effects. This is becoming increasingly important also 

because of the aging work-force [3] and the fact that there is a trend to automate such 

work-places even if it does not lead to additional short-term profits [10]. The preferred 

solution for these work-places is a robotic assistant to interact and aid a human operator 

rather than a fully automated system. Combining the flexibility of adapting in humans 

with the physical strength and efficiency of the robots/machines will potentially 
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transform life and work practices, raise efficiency and safety levels and provide enhanced 

levels of service [3][6]. 

Human robot interaction (HRI) is a challenging field that combines robotics, 

artificial intelligence, cognitive science, computer science, engineering, human computer 

interaction, psychology and social science [9]. One of the primary goals of this research 

is to find an intuitive way in which humans can communicate and interact with a robot 

[2]. The essential components of HRI include evaluating the capabilities of humans and 

robots and designing the technologies and training that produce desirable interactions 

between them [12]. Humans, in general have perception and cognitive functions and are 

able to act and react with respect to a given situation. Characterizing and understanding 

a situation, to describe and detect a situation and often predict the next steps, comes 

naturally to humans.  Whereas, to develop a robotic system with ‘Context Awareness’ or 

in other words to enable a robotic system to understand the circumstances under which 

they operate and react accordingly in a cooperative fashion is a challenging task [16]. 

Human robot interaction can be realized in various forms. A binary input (e.g. yes 

or no) from the human to the robot can be seen as an interaction in its simplest form. 

Depending on the kind of interaction [22], HRI in industrial scenarios can be partitioned 

into: a) human robot coexistence – where both agents (human and robot) operate in a 

close proximity on different tasks; b) human robot assistance – where the robot passively 

aids the human in a task (helping in lifting heavy objects); c) human robot cooperation – 

where both agents simultaneously work on the same work piece (each agent has their 

own task to do on the work piece); and d) human robot collaboration – where both agents 

perform coordinated actions on the same task (for e.g., robot handing over a work piece 

to the human operator, who then completes the coordination by taking the work piece). 

In order to intuitively interact with humans, the robots should know not only the 

properties of objects but also the capabilities of other agents (humans) in their 

environment [2]. For a close collaboration with humans, the robotic systems should also 

attribute meaning to beliefs, goals and desires of humans during a particular task. These 

set of (meta) representational abilities can be collectively called as “mental models” [18]. 

This would not only allow the robotic system to understand the actions and expressions 

of humans within an intentional or goal-directed architecture [2], but also for the human 

operators to better understand the capabilities of the robotic system [18]. 

In this paper we propose an architecture that combines state of the art object tracking 

[15], action recognition [14] approaches, together with a real-time robotic path planning 

system. To facilitate a human robot collaboration scenario with a common goal, the 

architecture is enabled with cognitive capabilities, where the cognition arises from the 

reasoning, simulating and planning behavior of the architecture. 

The main contributions of this paper are to present an integrated cognitive 

architecture, that combines state of the art perception (object tracking, human action 

recognition) and planning algorithms, to model, reason and interact in an assembly 

process that involve 

 real world object manipulations, see Figure 1,  

 a common goal between human and robot to complete an assembly 

process, and 

 preliminary results of an integrated cognitive architecture, evaluating the 

aspects ‘where’ (what is the suitable location for the task) and ‘how’ 

(how should the task be carried out) of the assembly process. 



The remaining part of the paper is structured as follows: In section 2 we review the 

state of the art approaches in human robot interaction which consider the perspective of 

the human (‘Perspective Taking’), followed by the problem statement description in 

section 3. Section 4 explains then the cognitive architecture in detail. The experimental 

setup and the evaluation of the proposed cognitive architecture in dealing with the ‘where’ 

and ‘how’ are presented in section 5, followed by conclusion and future steps in section 

6. 
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Figure 1. a) Flow chart describing the reasoning and planning in Low-level planner. Robotic 

manipulations/assistance during the assembly process b) ‘Picking’ – robot reaching for Heater/Tray, grasping 

Heater/Tray and lifting up, c) ‘Showing’ – Presenting the grasped Heater to the human, d) ‘Placing’ – Putting 

down the compound Heater-Base object and releasing gripper, e) ‘Handover’ – Presenting the Tray to the 
human. The robot releases the gripper when human reaches for the Tray 

2. Related Work 

Human robot interactions are demonstrated in different levels of abstraction in literature. 

The abstraction ranges from close proximity simultaneous task execution between 

human and robot to collaborative execution of a task with a common goal. A detailed 

survey on human robot interaction and emerging fields is given in [12]. In this section 

we would like to review HRI approaches where the robot interacts with the human by 

considering the ‘mental model’ of the human. This allows the robotic system to take 

actions from the perspective of human to facilitate a ‘natural’ interaction. 

Schrempf et al. [17] present a system architecture for human robot cooperation that 

allows the robot to plan its actions depending on the user’s intention, using a probability 

density function. A planning framework that allows a human and a robot to perform 

simultaneous manipulation tasks safely in close proximity is proposed in [8]. The 

framework generates a prediction of human workspace occupancy. The motion planner 

then plans a cost based trajectory with minimum penetration into human workspace to 

enable simultaneous manipulations.  

A cognitive system capable of handling ambiguous situations where the robot can 

perceive two similar looking objects, but where one of the objects is occluded by the 

human is presented in [7]. When asked for the object, the robotic system [7] takes the 



visual perspective of the human to determine which object the human referred to. Gray  

et al. [4] present an architecture that aims to manipulate the mental states of a human 

through robot actions. The framework demonstrates a competitive game scenario in 

which the robot’s actions influence the human’s mental states through their visual 

perception. 

Pandey et al. [1] presented a human robot interaction framework that enables the 

robotic system to take the visual-spatial perspective of the human and decide the effort 

level involved for the human in performing a particular task. This information of varying 

effort levels in doing a task depending on the current position of the human is used by 

the robotic system to initiate an interaction in a manner that has the least possible effort 

for the human. However, they consider artificial objects (with markers) for manipulation 

and a motion capture system (with complicated calibration process [20]) to capture the 

visual perspective of the human. Our approach considers manipulation with real world 

objects and relies on rgb-d sensors to derive the current status of the involved entities. 

These approaches show the importance of modeling the perspective of the human 

(goals, beliefs, desires) by the robotic system for an ‘intuitive’ human robot interaction. 

However, we differentiate from them by integrating state of the art object tracking and 

human action recognition approaches into the cognitive framework. We focus on human 

robot collaboration in a real world assembly process. Our system also takes into 

consideration the dynamic changes in the environment while developing the mental 

models, which describe the human perspective to achieve the goal. 

3. Problem Statement 

Given the ‘mental model’ that includes knowledge of the assembly process, involved 

objects, human capabilities (and preferences), robot capabilities and the environment (all 

entities in the workspace – objects, robot/s, human/s, etc.,), the main prerequisite for the 

architecture is to decide ‘what’ (which step) should be done ‘when’ (at which state 

instance in the assembly process) in order to attain the common goal. Given the ‘what’ 

the next question is to decide ‘who’ (the human or the robot or both together) is better 

suited for the task. These questions to some extent were answered in [4][7][8][17], but 

there is also an interesting research question that asks ‘where’ (at which location in the 

environment) should the task happen. The authors in [1] proposed an approach to answer 

this question. We extend the above research questions and pose the question ‘how’ (how 

should the task be carried out, i.e., collision free object manipulation considering human 

preferences) and propose a solution that can deal with real world objects. When dealing 

with real world objects, it is also important to ‘reason’ about collision free (with the 

environment, other objects, human) manipulation (See Figure 1 b, c, d, e – ‘Picking’, 

‘Showing’, ‘Placing’ and ‘Handover’ resp.) to ensure successful execution of the task. A 

mathematical formulation of the problem is given below. 

The assembly process (𝐴𝑃) is a collection of a set of States (𝑆) , a set of Events 

(𝑉) and a set of Relations (𝑅). The terms State and task state are used analogously in 

this work. The set of States (𝑆) define the individual steps of the assembly process. The 

set of Events (𝑉) drives the progress of the assembly process from one step to another. 

The Relations (𝑅)  specify the effect of a given Event 𝑉𝑚  on a given State 𝑆𝑖  in 

progressing the assembly process. At any instance of time, the assembly process is said 

to be in a given State (𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) on which an Event (𝑉𝑜𝑐𝑐𝑢𝑟) can occur (or is occurring) 

that could change the progress of the assembly process from one State to the other, whose 



relations are defined in 𝑅 . In this work, the knowledge about the assembly process 

(𝑆, 𝑉, 𝑅) is assumed to be known a priori.  

Depending on the current State 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , the architecture triggers an Event 𝑉𝑡𝑟𝑖𝑔𝑔𝑒𝑟  

to progress the assembly process. This triggering of an Event is defined by a 

manipulation plan 𝑀𝑝.  

The set of States = {𝑆1, 𝑆2, 𝑆3… 𝑆𝑛} , where each State instance 𝑆𝑖 corresponds to 

an assembly step, are known a priori (𝑛 defines the no. of assembly steps). An instance 

of a State 𝑆𝑖 corresponds to an individual step of the assembly process (𝐴𝑃). A State 

instance of the assembly process can be described with a set of tuples 

〈𝐴𝑐𝑡𝑜𝑟𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠〉.  
A State instance is said to be a collection of properties, where each tuple 

〈𝐴𝑐𝑡𝑜𝑟𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠〉 is called a property of that State instance, and together 

the set of tuples describe the State instance. In other words, the assembly process is said 

to be in a State instance, when all the properties of that State instance are satisfied. The 

set of 𝐴𝑐𝑡𝑜𝑟𝑠 is defined as 𝐴 = {𝐻𝑢𝑚𝑎𝑛, 𝑅𝑜𝑏𝑜𝑡} and it describes the actors involved in 

the assembly process. The set of Objects (𝑂) consists of 〈𝑖𝑑,   𝑝𝑜𝑠𝑒〉 pairs that define the 

object identification and the pose estimation parameters (position and orientation) of all 

objects in the scene. The collection of constraints in the set of 

〈𝐴𝑐𝑡𝑜𝑟𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠〉 tuples, define the conditions for each property of the 

State instance and are designed in such a manner that, when satisfied, the assembly 

process is said to be in that State instance. The properties of a State instance can either 

be observed directly or inferred. The constraints of a State instance can be composed of 

the following: 

 Actor Constraints: For a single tuple describing a property of the State 

instance, either the set of Actors or the set of Objects, could have a null value 

when they are deemed unnecessary. This is the case when it is only sufficient 

to constrain either the Actor or the Object set to describe that property of the 

State instance 

 Object Constraints: For example, a required property of a State instance could 

be, say an object 𝑂𝑙  should be on top of the table. In such cases it is sufficient 

to only constrain object 𝑂𝑙  to be on the top of the table and ignore the Actors, 

for that particular property 

 Actor-Object Constraints: This constrains the status of the actor and status of 

the object w.r.t each other and the assembly process. If the constraint is that 

the human actor has to be holding a particular object, then it is not sufficient 

to constrain just the human status or the object status but both of them applied 

in relation with each other. 

The set of Events 𝑉 = {𝑉1, 𝑉2, 𝑉3, … 𝑉𝑚} comprises 𝑚 events that can occur during 

the assembly process. An Event occurs during the assembly process only because of the 

activities performed by the human or the robot. An Event is described as an activity 

performed by an agent (𝐴𝑔)  on a 𝑡𝑎𝑟𝑔𝑒𝑡  (a 𝑡𝑎𝑟𝑔𝑒𝑡  could be other agents (𝐴𝑔)  or 

objects (𝑂)). An instance of an Event 𝑉𝑚 can be defined as a tuple 〈𝐴𝑔,   𝐴𝑐𝑡𝑠〉. Agents 

(𝐴𝑔)  can have a value {𝐻𝑢𝑚𝑎𝑛, 𝑅𝑜𝑏𝑜𝑡, 𝑏𝑜𝑡ℎ} , while 𝐴𝑐𝑡𝑠  is a pair defined as 

〈𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑦𝑝𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡〉. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑦𝑝𝑒 describes the type of activity performed by the 

agent. This activity could be a single action independent of the 𝑡𝑎𝑟𝑔𝑒𝑡 or actions that 

involve interaction with a 𝑡𝑎𝑟𝑔𝑒𝑡. 



The set of Relations = {𝑅1, 𝑅2, 𝑅3, … 𝑅𝑞} , where each Relation 𝑅𝑞  consists of a 

tuple 〈𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ,   𝑉𝑜𝑐𝑐𝑢𝑟 ,   {𝑆𝑟𝑒𝑠𝑢𝑙𝑡 :  𝑟𝑒𝑠𝑢𝑙𝑡(𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ,   𝑉𝑜𝑐𝑐𝑢𝑟)}〉, describes the effect of 

an Event 𝑉𝑜𝑐𝑐𝑢𝑟  occurring on a given State instance 𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒  and provides the resulting 

State 𝑆𝑟𝑒𝑠𝑢𝑙𝑡  in the assembly process. In case of the final State of the assembly process, 

the set of Relations (𝑅) is a null set. The following holds during the assembly process: 

∀ 𝑆𝑖  ∃ 𝑅
𝑖, where 𝑅𝑖 ⊆ 𝑅; 𝑖 = 1,… , 𝑛 . For every State instance 𝑆𝑖, there exists a set of 

Relations (𝑅𝑖) that defines the set of possible Events (𝑉𝑖) that could occur on that State 

instance which then result in a set of next States (𝑆𝑖+1), where 𝑉𝑖 ⊆ 𝑉and 𝑆𝑖+1 ⊆ 𝑆.  

Given the knowledge about the assembly process 𝐴𝑃 (𝑆𝑡𝑎𝑡𝑒𝑠, 𝐸𝑣𝑒𝑛𝑡𝑠, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠), 
the purpose of the cognitive architecture (See Figure 2) is to generate a manipulation 

plan 𝑀𝑝 that facilitates the assembly process to proceed from the current State to the 

next, in order to achieve the common goal (of completing the assembly process). The 

manipulation plan is abstracted in two layers: namely 𝑀ℎ𝑖𝑔ℎ
𝑃  and 𝑀𝑙𝑜𝑤

𝑃 . 𝑀ℎ𝑖𝑔ℎ
𝑃  denotes 

the ‘what’, ‘who’ and the ‘when’, while 𝑀𝑙𝑜𝑤
𝑃  denote the ‘where’ and ‘how’. The reason 

for differentiating the manipulation plan is  twofold a) to enable the system to consider 

dynamic changes while performing the task b) to enable the cognitive architecture to be 

robot embodiment agnostic (for more details see 4). 

The manipulation plan 𝑀ℎ𝑖𝑔ℎ
𝑝

is described as a tuple 〈𝐴𝑔𝑡𝑎𝑠𝑘, 𝑃𝑎𝑟𝑎𝑚𝑠〉 , where, 

𝐴𝑔𝑡𝑎𝑠𝑘 describes the manipulation task that should be carried out by the respective agent 

(human, robot, or together). 𝑃𝑎𝑟𝑎𝑚𝑠 consists of the necessary information that involves 

the required object on which a manipulation should occur and in which fashion ‘how’. 

The ‘how’ (In what manner a manipulation task should occur/ is expected to occur) is 

based on the ‘mental model’ of the cognitive architecture, which considers human 

preferences, knowledge of the 𝐴𝑃,  the current status of 𝐴𝑃 and the environment.  

Once the manipulation plan 𝑀ℎ𝑖𝑔ℎ
𝑝

 is generated it is converted into a set of ‘low level’ 

executions 𝑀𝑙𝑜𝑤
𝑝

that consider the dynamic changes in the environment (object 

configuration, human position, robot status). Given the ‘what’ (𝑀ℎ𝑖𝑔ℎ
𝑝

) the aim is to find 

the ‘where’ (what is the best possible location for a task) and ‘how’ (what is the best way 

to carry on the task) -𝑀𝑙𝑜𝑤
𝑝

, considering the current sensor input, the target State and 

known human preferences. Human preferences are communicated to the system via 

direct user input, who at the time of task abstraction also creates a preferred manner in 

which a task needs to be done. Human preferences can also be inferred by observing how 

a human operator executes the task. If there are no preferences mentioned for a task 

execution, the system presents different alternatives possible for doing the task and then 

infers the preferences from the human execution. It is not in the focus of this work to 

deal in detail with human preference modeling (creating mental models), but to 

concentrate on the ‘where’ (and ‘how’) of the manipulation execution, given the 

knowledge about the assembly process and human preferences.  



4. Architecture 

The cognitive architecture proposed for a human robot collaboration scenario with a 

common goal of completing the assembly process is as shown in Figure 2. The reasoning 

capabilities of the architecture are twofold: a) On the one hand, the High-level planner 

with the knowledge of the assembly process perceives, reasons and initiates the 

necessary cooperative behavior of the robotic system.  Its output is a manipulation plan 

𝑀ℎ𝑖𝑔ℎ
𝑝

describing ‘what’ needs to be done, ‘when’ and by ‘whom’. These instructions are 

provided to the Low-level planner for realization of the common goal. b) Though the 

High-level planner provides the manipulation plan, it is equally important to decide 

‘how’ and ‘where’ a manipulation task (𝑀𝑙𝑜𝑤
𝑝
)  is to be carried out. The individual 

modules of the architecture are briefly described below. 

4.1.  Human Action Recognition and Object Tracking 

Perception and classification of human actions as well as object recognition and tracking 

are important prerequisites to establish a human robot collaboration system. A state of 

the art action recognition framework [14], using skeleton tracking, classifies actions by 

applying a multi-class random forest classification technique. The module is capable of 

providing the current action executed by the human and the position (skeleton tracking) 

in real-time. Object tracking in 3D can be defined as the problem of estimating the 

trajectory (6 DOF) of an object in the 3D point cloud as it moves around a scene. The 

tracking approach currently developed and used [15] relies on depth data only, to track 

multiple objects in a dynamic environment. It builds on random-forest based learning 

techniques to deal with problems like object occlusion, motion-blur due to camera 

motion and clutter. 

4.2. High Level Planner 

The High-Level Planner provides the main reasoning functionalities to the cognitive 

architecture. Its major purpose is to reason about the current state 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  of the 
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Figure 2: The Cognitive Architecture capable of dealing with the ‘where’ and ‘how’ of the collaboration 



assembly task and to generate a manipulation plan of actions 𝑀ℎ𝑖𝑔ℎ
𝑝

 to be carried out, in 

order to reach the next attainable assembly state. This is done by considering the current 

situation of the surrounding environment, a-priori knowledge, as well as experiences 

from previous perceptions and assembly task execution cases. The upcoming sub-

sections describe the functional components of the High-Level Planner in detail. 

4.2.1. Knowledge Base and Knowledge Management 

Knowledge within the High-level planner (See Figure 2) is organized using two 

separated databases. An a-priori knowledge base is used to store permanent knowledge, 

including assembly process descriptions (AP) (see section 3), environmental knowledge 

(e.g. CAD models of workspace and objects of interest), and configuration data (e.g. 

capability description of functional system components, human workers and robots). 

And the other is the online database (the online version of knowledge base), that is 

used to share data which is created during assembly process execution. These data sets 

are transient and include perception data (e.g. object configurations and human actions), 

human worker preferences, instances of planned or perceived actions and their 

parameterization, and identified assembly task variations (i.e. an adaptation of an 

assembly task description, based on newly classified State/s and Event/s). After assembly 

task execution, newly experienced data can be moved into the a-priori knowledge base 

thus extending permanent knowledge. The data structures of the knowledge bases build 

on the knowledge processing framework KnowRob [13]. In this work, the basic 

ontologies of KnowRob were extended in order to cover the description of assembly 

process variants as well as pre-, operational- and post-operational conditions for Events 

(𝑉). Functional system components including their capabilities are described using the 

Semantic Robot Description Language (SRDL) [11]. Combined with perception data, 

the databases provide major input for the Reasoning system. 

4.2.2. Reasoning System 

The reasoning system accesses data from both the a-priori and the online database, in 

order to create qualitative hypotheses on object configurations (the way the objects are 

spatially arranged) and ongoing human activities involving objects, by considering the 

assembly task context and perception data. Based on these hypotheses the reasoning 

system reasons about the current status of the assembly process. As described earlier in 

section 3, the assembly state instance 𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is described by a set of tuples, including 

𝐴𝑐𝑡𝑜𝑟𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑛𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 . The reasoning system checks if the recent 

perception results (hypotheses), match the required constraints. This process is triggered 

once the system expects a stable assembly State, or when an unexpected Event occurs. 

Given the current State of the assembly process, the reasoning system deduces the 

next Event 𝑉𝑛𝑒𝑥𝑡  (including its sub actions), which needs to occur in order to proceed 

towards the common goal. In case of the next required Event being detected, the required 

action instances are created, stored in the online database. To commence the execution 

of action instances, manipulation plans 𝑀ℎ𝑖𝑔ℎ
𝑝

 for robotic and human actions are 

generated, also observing user preferences stored in the online database. Manipulation 

plans containing robot actions are sent to the Low-level planner for the physical 

execution. For human actions, task relevant information to guide the human is sent to the 

visualization module. The execution of human actions is observed by the reasoning 

system.  



4.3. Low Level Planner 

The main goal of the Low-level planner is to convert high level manipulation plans 

𝑀ℎ𝑖𝑔ℎ
𝑟𝑜𝑏𝑜𝑡 for robotic actions, into low level plans 𝑀𝑙𝑜𝑤

𝑟𝑜𝑏𝑜𝑡and to execute those. Figure 1 a) 

depicts a flow chart describing the execution workflow. Considering a received plan 

𝑀ℎ𝑖𝑔ℎ
𝑟𝑜𝑏𝑜𝑡 (see description in section 3), the Low-level planner converts and executes each 

manipulation task pair 〈𝐴𝑔𝑡𝑎𝑠𝑘,𝑖 , 𝑃𝑎𝑟𝑎𝑚𝑠𝑖〉 into a low level task one by one. For a single 

converted task 𝑀𝑙𝑜𝑤,𝑖
𝑟𝑜𝑏𝑜𝑡 ⊆ 𝑀𝑙𝑜𝑤

𝑟𝑜𝑏𝑜𝑡, the low level actions (e.g. REACH, GRASP,…) are 

executed iteratively. According to the given parameters 𝑃𝑎𝑟𝑎𝑚𝑠𝑖 , the current object 

configurations of interest, human activity status, or target positions within the workspace, 

are considered during execution. With this information, the Low-level planner simulates 

collision-free reach and grasp operations of the robot using [5], also satisfying user 

preferences. The trajectories which suit best are executed and visualized, to show the 

intention of the robotic system to the human operator. This status information is 

communicated to the High-level planner, once the manipulation plan 𝑀ℎ𝑖𝑔ℎ
𝑟𝑜𝑏𝑜𝑡 was fully 

executed (no manipulation task pairs pending) or one single task failed. 

4.4. Visualization for Human Machine Interfaces 

The visualization module not only conveys the intent of the robotic system to the human 

operator but also guides the human operator in performing a required manipulation task. 

The manipulation plan (𝑀ℎ𝑖𝑔ℎ
𝑝
, 𝑀𝑙𝑜𝑤

𝑝
)  received from the High-level and Low-level 

planner respectively aids the visualization module to display the information necessary 

during the 𝐴𝑃. It provides a direct platform for the human operator to communicate with 

the cognitive system (communicating user preferences) and vice versa. The cognitive 

system however, is actively monitoring the complete environment (including the human 

operator) to infer the current situation of the assembly process and characterize it. The 

information about the cognitive system state (what the cognitive system thinks about the 

current status of the assembly process), and intention (that suggest what should happen 

next), the required assistance from the human operator and the current status of the 

robotic platform are visualized by the visualization module. 

4.5. Robotic Platform Components 

The robotic platform consists of a UR10 [21] robotic arm with 6 degrees of freedom. It 

also consists of a SCHUNK 2 finger electric parallel gripper [19]. These components 

provide interfaces to the Low-level planner to send reach (trajectory plan) and grasp 

triggers to the robot arm and the gripper respectively. The status information that is 

returned by the robot (joint angles) and the gripper is used by the Low-level planner to 

determine success or failure of the associated manipulation execution. 

5. Experiments and Evaluation 

The experiments carried out, focus on an evaluation of the capabilities of the Low-level 

planner, specifically dealing with the aspects of ‘where’ and ‘how’ the robotic assistance 

should be provided. Figure 1 (b, c, d, e) depict the type of robotic assistance possible in 



the chosen assembly process of a steam cooker.  Figure 3 (a) depicts the robotic system 

setup, including the human operator. For the considered common goal of assembling a 

steam cooker device, the assembly task states and Events, as given in Table 1, are known 

a-priori to the system. A video describing the robotic system and the assembly task can 

be found here2. It is recommended to watch the video to better understand the assembly 

process and the functional components involved. Having the common goal of assembling 

a steam cooker device, the performance indicator of the integrated cognitive architecture 

is defined as the ability of the system to provide assistance to the human operator during 

the assembly process, at a position that is suitable (preferred by human). In this work, 

user preferences are specified prior to the execution of the assembly task (assumption).  

Table 1. Description of states of the Steam-Cooker assembly task, according to the notation, introduced in 

section 3. Events to proceed to the next assembly state are described in the last column. Example: In State 𝑆1, 
the human actor is HOLDING the Base, the robot is IDLE, the Heater is located OnTop of the Table. In order 

to proceed to the next state 𝑆2 , perform Event 𝑉2 : Robot executes a PickAndShow action on the Heater 
involving the ‘showing-location’ defined by the human preference. 

 

 
Figure 3. (a) System setup including robotic platform (robot, gripper), 3D sensors, steam cooker parts and the 

human agent. (b) Visualization showing planned robot movements. Presenting objects for compound object 
assembly, where human preference of location is (c) right hand side (d) left hand side 

                                                           
2 Assembly process video: https://www.youtube.com/watch?v=URfJUMNc9SY  

a)

b) c) d)

State Actors Objects Constraints Event 𝑉𝑛𝑒𝑥𝑡 
S0 Both  RS,HA::IDLE V1<human, <PickAndShow, Base>> 

  Base SR::OnTop<Table> 

S1 Human Base HA::HOLDING<Base> V2<robot, <PickAndShow, Heater, 
Loc::Human-Preference>>  Robot  RS::IDLE 

  Heater SR::OnTop<Table> 

S2 Human Base HA::HOLDING<Base> V3<human, <Assemble, Base, 

Loc::Heater>>  Robot  RS::IDLE 

S3 Both  RS,HA::IDLE V4<robot, <Placing, H-B, 
Loc::EmptyPlace>> 

S4 Both  RS,HA::IDLE V5<human, <PutObjectInto, 

Ring, H-B>>   Ring SR::OnTop<Table> 

  H-B SR::OnTop<Table> 

S5 Both  RS,HA::IDLE V6<robot, <PickAndHold, Tray>> 

  Tray SR::OnTop<Table> 

  H-B-R SR::OnTop<Table> 

S6 Robot  RS::IDLE V7<robot, <Release, Tray>> 

 Human TCP HA::REACHING<TCP> 

S7 Robot  RS::IDLE V8<human, <Assemble, Tray, H-B-R>> 

 Human Tray HA::HOLDING<Tray> 

  H-B-R SR::OnTop<Table> 

S8 Both  RS,HA::IDLE no Event 

  SC SR::OnTop<Table> 

RS: Robot State; HA: Human Action; SR: Spatial Relation; H-B: Heater-Base object; 
H-B-R: Heater-Base-Ring object; SC: Steam-Cooker; TCP: Robot Tool Center Point; Loc: Location 

https://www.youtube.com/watch?v=URfJUMNc9SY


In the given case, the heater part is presented with respect to the detected “spine-

shoulder” joint [14]. An offset position to this human joint can be chosen in any direction, 

as shown in Figure 3 (b) and (c). For performance evaluation, a number of trials with 

different configurations of the assembly parts, where the Low-level planner also 

considers the two different user preferences, were carried out (see Table 2). An assembly 

process trial is defined successful if the system was able to ‘pick’, to ‘place’, to ‘present’ 

and to ‘handover’ objects appropriately for the user and without collisions. In case of 

failures, as shown in experiments 2 and 6, the Low-level planner communicates the 

failure to the High-level planner to enable re-planning accordingly. For these 

experiments the feedback loop to the High-level planner was not considered, as 

recovering from failure was not in the focus of this evaluation. 

Table 2. Evaluation table of the cognitive architecture performance, in dealing with the ‘where’ and ‘how’ of 

the assembly process (considering human preferences). Experiments (1-5) in grey, were performed considering 
the human preference ‘present heater left’. Experiments (6-10) with human preference ‘present heater right’ 

Experiment  ‘Picking’ ‘Showing’ ‘Placing’ ‘Handover’ ‘Success’ 

1 Yes yes yes yes yes 

2 Yes yes yes no no* 

3 Yes yes yes yes yes 
4 Yes yes yes yes yes 

5 Yes yes yes yes yes 

6 Yes yes no no no** 
7 Yes yes yes yes yes 

8 Yes yes yes yes yes 

9 Yes yes yes yes yes 
10 Yes yes yes yes yes 

* Robot failed to grasp the Tray object (‘handover’ step) due to a pose estimation error. 

** Robot failed to ‘place’ the ‘Heater-Base’ object due to a colliding movement path. 

6. Conclusion and Future work 

Human-robot collaboration in industrial environments is gaining lot of attention to 

improve flexibility in production. Conventionally, robotic systems were used in highly 

automated production scenarios behind closed fences to guard humans. The recent 

developments in ‘collaborative robotics’ [10], are allowing these robotic systems to 

break the fences, and move towards working hand in hand with humans. 

In this paper we presented an integrated cognitive, modular system architecture for 

a robotic system collaborating with a human operator to complete an assembly task. The 

architecture combines state of the art object tracking, action recognition and path 

planning approaches together with a knowledge representation framework to perceive, 

reason, plan and execute an assembly process in a human-robot collaboration scenario. 

By conducting several real-world experiments, we evaluated the ability of the 

architecture (Low-level planner) in answering the questions ‘where’ and ‘how’, by also 

considering varying human preferences in a dynamic environment. 

As future work, we plan to extend the reasoning capabilities to learn/classify 

previously unknown assembly task states and events during runtime. These extensions 

can help us also in recovering from failures. In case of human-robot collaboration one 

could see two forms of failures. One which is caused due to the robot’s action execution 

(grasp, reach failures) and the other concerns with deviations due to unexpected human 

behavior. For a more dynamic management of human preferences, we plan to extend the 

human-machine-interface to enable the human operator to specify preferences or to 



accept/reject proposals from the cognitive architecture on how to proceed the assembly 

process. 
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