
Chapter 13
Self-aware Object Tracking in Multi-Camera
Networks

Lukas Esterle, Jennifer Simonjan, Georg Nebehay, Roman Pflugfelder, Gustavo
Fernández Domı́nguez, and Bernhard Rinner

Abstract This chapter discusses another example of self-aware and self-expressive
systems: a multi-camera network for object tracking. It provides a detailed descrip-
tion of how the concepts of self-awareness and self-expression can be implemented
in a real network of smart cameras. In contrast to traditional cameras, smart cameras
are able to perform image analysis on-board and collaborate with other cameras in
order to analyse the dynamic behaviour of objects in partly unknown environments.
Self-aware and self-expressive smart cameras are even able to reason about their
current state and to adapt their algorithms in response to changes in their environ-
ment and the network. Self-awareness and self-expression allow them to manage the
trade-off among performance, flexibility, resources and reliability during runtime.
Due to the uncertainties and dynamics in the network a fixed configuration of the
cameras is infeasible. We adopt the concepts of self-awareness and self-expression
for autonomous monitoring of the state and progress of each camera in the network
and adapt its behaviour to changing conditions. In this chapter we focus on describ-
ing the building blocks for self-aware camera networks and demonstrate the key
characteristics in a multi-camera object tracking application both in simulation and
in a real camera network. The proposed application implements the goal sharing
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with time-awareness capability pattern, including meta-self-awareness capabilities
as discussed in Chapter 5. Furthermore, the distributed camera network employs the
middleware system described in Chapter 11 to facilitate distributed coordination of
tracking responsibilities. Moreover, the application uses socially inspired techniques
and mechanisms discussed in Chapter 7.

13.1 Smart Camera Networks

Recent advances in technology make cameras almost omnipresent in our every-
day life. Cameras are widely used for applications in security, disaster response,
environmental monitoring and smart environments, among others. Smart cameras
have emerged recently by bringing together advances in computer vision, embedded
computing, image sensors and networks [415, 341]. They provide image sensing,
processing, storage and communication capabilities onboard an embedded device.
Smart cameras gained acceptance due to various reasons, including the low system
costs, the ability to avoid network loads and the wide range of possible application
scenarios. Soon enough, single smart cameras were connected to distributed smart
camera networks. They are real-time, distributed, embedded systems that perform
computer vision tasks using multiple cameras [45, 342, 336]. Compared to a net-
work of traditional cameras, smart cameras offer the benefit that raw data do not
have to be transmitted via the network. These raw data are processed on the sen-
sor platform and necessary results are transmitted. As each camera has reasonable
computing and communication capabilities, such a network of smart cameras can
be treated as a distributed system for image processing.

In order to allow useful in-network processing of captured imagery, smart camera
networks have to deal with various challenges. These challenges vary from highly
dynamic behaviour of objects over partially unknown environments to required co-
operation with neighbouring cameras on demand. To enable future cameras to deal
with these challenges without human interaction, they are required to achieve ad-
vanced levels of autonomous behaviour to adapt themselves at runtime and learn
appropriate behaviours for changing conditions. A particular challenge is to man-
age the trade-off of conflicting objectives such as high performance, low resource
consumption and high reliability. Not knowing possible changes due to dynamics in
the objects’ behaviour, the environment or the network itself does not allow a fixed
configuration [348]. An adaptive approach only allows a system to change based on
predefined options and again only based on expected and foreseen trade-offs.

In this chapter we adopt the concepts of self-awareness and self-expression as a
successful alternative to fixed configurations. We translate these concepts to com-
putational analogies and apply them to smart camera networks [340]. As introduced
in Chapter 12, self-awareness refers to the ability of a system to obtain and main-
tain knowledge about its state, behaviour and progress, enabling self-expression, the
generation of autonomous behaviour based on such self-awareness. Combining both
self-awareness and self-expression allows for adaptation of a camera’s behaviour
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to changing conditions in an effective and autonomous manner. We therefore im-
plement the reference architecture using the goal sharing pattern. We enhance this
pattern with meta-self-aware capabilities to improve our application even further.
The fundamental building blocks to achieve self-awareness and self-expression in
a camera are effective sensing of the environment, learning models of the cam-
era’s state and context during runtime as well as decentralised decision making. The
building blocks and their interactions are explained in this chapter in order to build
a computationally self-aware and self-expressive camera network. Its features and
capabilities are demonstrated with a distributed multi-camera tracking application
as an example.

13.2 Object Tracking

Object tracking is an important topic and an extensively investigated subject within
the field of computer vision. Research of object tracking algorithms has generated
great interest in the computer vision community due to the many fields of applica-
tion such as automated surveillance, security, object indexing and retrieval, human
computer interaction, transportation and activity recognition. Object tracking can
be classified as an intermediate-level computer vision task. Low-level information,
such as edge segments or corner points, is used to build the desired trajectory in or-
der to provide it for high-level tasks such as object retrieval or activity recognition.
Basically, the goal of a tracking task is to recover the motion paths or trajectories
of objects using detected object locations, such that each recovered trajectory rep-
resents the motion of a single object. Given an object i in frame t (noted as Ot

i) and
a set of ‘n’ candidate objects in frame (t +1) Ot+1

k (where k = 1, ...,n), the tracking
problem consists of selecting an object j in frame (t + 1), i.e., Ot+1

j , from among
all ‘n’ objects which best matches with object Ot

i . The term object refers to image
objects and the best matching is specified by some distance measure.

Unfortunately, the captured visual data is usually contaminated with noise, and
missing observations increase the complexity of the tracking task. Objects can ap-
pear in different orientations, rotations and shapes depending on how they are ori-
ented towards the camera. Occlusions can occur any time while reliable detections
are still needed. Changing lighting conditions may appear in many environments
and add another challenge to the tracking algorithms. Therefore, advanced tech-
niques for data association and state estimation are necessary to provide robustness
in the generation of the objects’ trajectories, i.e., to succeed in the tracking task.
Tracking algorithms can be classified according to different criteria, including the
type of information the algorithms extract and use, the extraction method, and the
matching approach (e.g., deterministic or stochastic). We refer the interested reader
to [421] for a survey of tracking algorithms, to [392] for video tracking and to [184]
for visual surveillance tracking.

In a multi-camera network the goal is to detect, localise and track moving ob-
jects such as pedestrians or vehicles within the fields of view (FOVs) of all cam-
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eras throughout the whole network. Besides the aforementioned difficulties, multi-
camera tracking poses additional challenges due to dynamics of the environment,
uncertainties of camera pose and network topology. In comparison to tracking ob-
jects in a single camera, multi-camera tracking requires the cooperation of the cam-
eras to delegate tracking responsibilities. The use of epipolar geometry to fuse
the object locations is useful when cameras have overlapping FOVs [209, 319].
However, in many scenarios and applications, cameras do not have overlapping
FOVs. In such situations, assumptions about the path followed by the object or its
speed [185, 214, 200], use of a motion model [320], assumptions about geometry
of the scene [253] or a combination of learning the spatial links between cameras,
movement of the object and colour information [298] are useful to track objects
successfully.

13.3 Multi-camera Tracking Coordination

Transferring tracking from single cameras to a network of multiple cameras re-
quires coordination of the tracking responsibility. Coordinating this responsibility
for tracking an object among multiple cameras is a fundamental issue in online
multi-camera tracking. A particular challenge is maintaining the association of ob-
jects when they move among cameras, i.e., to re-identify tracked objects among
multiple cameras [381]. Once a desired object to be tracked is identified, the cam-
era network has to decide by itself how to track this object through the network
whenever this object is present in the observed scenario.

In centralised coordination, the cameras send the traces of the objects within
their FOV to a central node which then selects the “best” trace. Various ap-
proaches have been proposed to coordinate tracking responsibilities in camera net-
works [199, 77, 245]. A central component for coordination of tracking responsibil-
ities introduces benefits and drawbacks. On the downside, gathering all information
on a single entity adds significant communication overhead and computational load
on a single component. Furthermore, a centralised approach limits scalability and
introduces a single point of failure, reducing the applicability of this approach in
large camera networks. On the upside, a centralised approach may achieve a better
tracking performance due to the availability of complete tracking and state informa-
tion from all sensors in a single node. A comprehensive analysis of the state of the
art is given in [322, 280].

In distributed coordination each camera decides on its own when and to whom
to hand over the tracking responsibility. This distributes the computational load to
the cameras in the network and reduces the communication overhead by avoiding
transmitting full state information of all cameras. This makes the network not only
highly scalable but also quite robust to failure of single cameras or even to changes
in network topology caused by dynamically adding cameras. Various approaches
for distributed coordination without centralised control have been presented in the
literature [118, 328, 128]. Deriving the handover decision based on possibly incom-
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plete, local information and with a camera’s limited resources is still a fundamental
challenge in distributed coordination.

In the following we summarise how self-aware and self-expressive approaches
are used in order to enable a network of smart cameras to coordinate tracking re-
sponsibilities autonomously and efficiently among each other.

13.4 Self-aware and Self-expressive Building Blocks
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Fig. 13.1 The architecture of a self-aware and self-expressive camera node composed by six build-
ing blocks

To endow a camera network with self-awareness and self-expression, dedicated
self-aware and self-expressive building blocks are implemented in the individual
camera nodes. The different building blocks are able to interact with blocks locally
on each camera as well as with other blocks in the network on remote cameras. The
blocks depicted in Figure 13.1 aim for a generic and flexible design and implement
architectural self-aware and self-expressive patterns as discussed in Chapter 5. Self-
aware building blocks, such as object tracking, resource monitoring, and topology
learning, are able to monitor its state and behaviour. Utilising online learning tech-
niques allows them to maintain models of their states and the respective behaviour
rather than rely on predefined knowledge and rules. The generated models are then
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used in the self-expressive building blocks (i.e., object handover and strategy selec-
tion) to steer the behaviour of the entire system. The objectives & constraints block
represents the camera’s goals and resource constraints. Both highly influence the
other blocks and hence the behaviour and interaction of each individual camera in
the network.

The aggregation of individual camera nodes allows the composition of a truly
self-aware and self-expressive decentralised camera network. As our employed em-
bedded camera platforms are rather resource-constrained, we focussed the design
of each individual building block on resource awareness. Thus, while each building
block can be utilising a diverse number of algorithms from computer vision, online
learning, distributed coordination and decision making for their implementation, all
building blocks have to be able to execute in real time.

In an iterative design process, we initially implemented the interaction awareness
pattern in order to allow the cameras to learn about their neighbouring cameras. This
allowed the individual cameras to coordinate tracking responsibilities among local
neighbouring cameras rather than the entire network. In the next step, we introduced
time awareness and enabled each individual camera to also “unlearn” previous learnt
information. This becomes important in case the network changes during runtime. In
the final step for this application, we introduced meta-self-aware capabilities. These
capabilities allow the cameras to trade off exploration, identifying local changes in
the network, and exploitation, using the previously learnt information in order to
optimise coordination of tracking responsibilities.

13.4.1 Object Tracking

The object tracking (OT) building block of each camera is responsible for acquiring
images, detecting objects and tracking them within the camera’s FOV. Additionally,
the OT block transmits images and tracking results to other interested components
in the system (for example, the user interface), and if necessary it can update the
model of the object during runtime. Identifying the model within the FOV of a
camera relates to private self-awareness whereas creating and adapting the model
of an object corresponds to the model in our reference architecture (cf. Chapter 3).
The tracking process is described as semi-automatic because the user has to select
the desired object to be tracked. After initialising the process, the computer vision
tasks run automatically.

The implementation of this self-aware and self-expressive camera network ap-
plication has been performed in multiple iterations. While the initial version was
limited to tracking a single object within the camera network, the final version was
capable of simultaneously tracking three people on a network of six smart cam-
eras. The camera network employs appearance-based tracking without using tem-
poral information from previous frames. As soon as the object has been identified
within the FOV of the camera, the OT starts tracking the object. By doing so, the OT
can adapt the visual representation of the object and improve the internal model if
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this is desired. This simple approach achieves the necessary computational resource
and real-time requirements as well as acceptable accuracy and robustness against
dropped frames, occlusions and disappearance of objects.

The approach employs general assumptions about the cameras and visual dis-
criminability of objects. The final implementation of the camera network [362] ex-
ploited the static camera assumption and built a detailed model of the background.
The static background model enables us to implement a fast and reliable foreground
object detector. To perform the association of foreground objects with the desired
object to be tracked, colour histograms are compared using appropriate distance
metrics. The method is illustrated in Figure 13.2. In a first step, foreground pixels in
each camera are identified by comparing the camera image to the background im-
age learned by each camera individually. Foreground constitutes moving objects that
comprise objects of interest for tracking. These foreground pixels are then grouped
into candidate objects based on their connectedness. In a second step, an association
is performed between these candidate objects and a template database that contains
the objects of interest (Figure 13.2(d)). To this end, a measure of similarity is em-
ployed according to [82] which is interpreted as the confidence of the validity of the
association. This is depicted by different colours in Figure 13.2(c).

The association between templates and candidates is established by interpreting
the problem of associating templates and candidates as a transportation problem,
where the distances between the respective feature vectors are the transportation
costs and the goal is to minimise all transportation costs. This problem can be solved
optimally by employing the well-known Hungarian algorithm [227]. Additionally,
the reciprocal of the transportation cost for a successful association is reported to
other components as a confidence value of the current object. In each frame, the ob-
ject tracking block searches for an assignment minimising the overall transportation
cost of the system. In this way, a satisfying tracking performance is achieved even
in difficult scenarios.

13.4.2 Object Handover

The object handover block coordinates the object tracking responsibility in the cam-
era network. We apply a novel market-based handover approach [125]. A more de-
tailed description of this approach is presented in Section 7.4. In this artificial mar-
ket, the cameras act as traders and treat object tracking responsibilities as goods. For
trading purposes, an artificial currency is used. This currency is provided by each
object tracking responsibility as some utility over time. This makes these responsi-
bilities worthwhile for cameras to own. The cameras can decide in a self-expressive
manner on their own when to “sell” tracking responsibilities to other cameras using
single sealed-bid auctions. Employing the Vickrey auction mechanism, which sells
the good to the highest bidder for the second highest price, makes truthful bidding
the dominant strategy among the participating cameras. Whenever a camera decides
to sell an object, it initiates an auction for this particular object by transferring an
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Fig. 13.2 Object tracking approach. (a) Template database images, (b) original image, (c) matching
results between foreground objects and objects templates, (d) foreground image

object description to the other cameras. The receiving cameras request the state of
the searched object from the object tracking block. This means, the object tracking
block searches within its own FOV for the object and values the object based on de-
tection confidence and visibility. The object handover blocks of the cameras return
their valuation as a bid. The auctioneering camera selects the highest bidder and
transfers the tracking responsibility. An important question for the selling camera is
to whom to send the auction invitations. Without any a priori knowledge about the
network topology, invitations could be broadcasted to all cameras. By following this
policy the “best” camera for taking over the tracking responsibility will receive an
invitation (and may respond with the highest bid). However, the BROADCAST policy
causes a significant communication and computation load because each camera has
to perform an object detection after receiving the invitation.
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13.4.3 Topology Learning

If the auctioneering cameras are aware of the potentially “best” cameras in their
neighbourhood, this knowledge can be exploited to significantly reduce the over-
head. Such topological information can be initially assigned to the cameras or com-
puted by means of multi-camera calibration during the deployment of the camera
network. However, in a self-aware manner we learn the network topology by observ-
ing the bidding behaviour of cameras over time. Each camera keeps track of its local
neighbours and uses artificial pheromones to express the likelihood of a handover
to that camera. Whenever a handover has taken place, the artificial pheromone to
the succeeding camera is strengthened. If no trading occurs, pheromones evaporate
over time. This mechanism enables each camera to deal with network uncertainties
and to adapt to changes in its neighbourhood topology caused by addition, removal
or failure of cameras or changes in the movement pattern of the objects.

We exploit the learnt neighbourhood topology through three different communi-
cation policies for the handover: broadcast auctions to all cameras (BROADCAST), a
smooth probabilistic multicast (SMOOTH) and a threshold-based probabilistic mul-
ticast (STEP) [125]. The SMOOTH policy sends auction invitations to all neighbours,
with probability normalised to the current pheromone level. The STEP policy sends
invitations to all neighbours with pheromone level above a certain threshold and
to neighbours below the threshold with some (low) probability. Details and formal
definitions to these different policies are also given in Section 7.4.1.1. Additionally,
it is not only important to whom to advertise object tracking responsibilities, but
also when to initiate such auctions. We distinguish between sending out invitations
at regular intervals (ACTIVE) or only when the object is about to leave the FOV
(PASSIVE). While a PASSIVE schedule ensures we keep track of each object contin-
uously, in comparison the ACTIVE schedule achieves higher network-wide tracking
utility as cameras assign tracking responsibilities to the camera “seeing” the object
best at all times. Combining the variations in which cameras to invite and when to
send out the invitations results in six different self-expressive handover strategies,
each of which obviously influences tracking utility as well as communication and
computational overhead.

13.4.4 Strategy Selection

While the six handover strategies allow us trade off communication overhead for
tracking utility and hence influence the behaviour of the network, selecting a strat-
egy is a difficult decision. The performance of each strategy strongly depends on fac-
tors such as the placement of the cameras, the movement patterns of the objects and
the object tracking algorithm. In principle, we can follow three approaches for strat-
egy selection: (i) a homogeneous assignment, where all cameras employ the same
strategy from deployment time on, (ii) a heterogeneous assignment, where at least
two cameras in the network use different strategies from deployment time on, and
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(iii) a dynamic selection, where each camera can select its strategy autonomously
during runtime.

As discussed in Section 7.4.1.3, we use online learning algorithms, specifically
multi-armed bandit problem solvers, within each camera to learn the appropriate
strategy for each node during runtime to trade off communication overhead for
achieved tracking utility. The bandit solvers balance the exploitation behaviour,
where a camera achieves high performance by using its currently best known strat-
egy, with exploration, where the camera explores the effect of using other strategies
to build up its knowledge [239, 238]. Dynamic strategy selection leads to a meta-
self-aware behaviour of the individual camera nodes and by extension of the entire
camera network. This allows the network as a whole to achieve a more Pareto ef-
ficient global performance than with any static strategy assignment at deployment
time.

13.4.5 Resource Monitoring

Resource monitoring is an important aspect of computational self-awareness, and its
main objective is to observe the available resources on the camera nodes. The mon-
itored data is further used to build up models of resource consumption for each task
a camera is capable of performing. The knowledge generated by the self-aware re-
source monitoring block is provided to the individual self-aware and self-expressive
blocks on the camera. Object handover can use this information on the one hand
to reason about submitting bids for a new object tracking responsibility and on the
other hand to factor in available resources at the time of bidding for its valuation
of the object. The strategy selection block uses the information from the resource
monitor to reason not only about the performance of each task but also about its
respective resource consumption. In our network, we currently monitor required
processing power, available and allocated memory, and network traffic.

13.4.6 Constraints and Objectives

In order for a camera to become self-aware, it not only requires constraints, objec-
tives and goals but also has to be aware of them. In our system every camera has
its own constraints and objectives which it needs to consider for its self-aware and
self-expressive operation. Constraints specify some limitations of the available re-
sources (processing, memory and networking). These constraints help us decide on
whether to bid for an object, but also help us evaluate the performance of the differ-
ent strategies. In contrast to hardware-defined constraints, objectives are defined by
the user during runtime or the designer of the system before deployment. Objects
in our system drive the behaviour of the cameras and specify, for example, some
quality of service parameters or certain tasks the cameras should achieve.
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13.5 Camera Network Case Study

13.5.1 Camera Network Setup

For our experimental study, we set up a smart camera network in our laboratory
at Alpen-Adria-Universität Klagenfurt. The network consists of six cameras, four
of them in the laboratory room with overlapping fields of view and two more in
the corridor and lounge area, respectively. An illustration of the camera layout is
given in Fig. 13.3. Figure 13.4 shows snapshots of the six cameras’ FOVs. This
heterogeneous network is composed of different hardware platforms. Cameras 1 to
4 are equipped with Atom processors and connected via wired Ethernet. Cameras
5 and 6 are based on Pandaboards equipped with ARM processors and use WiFi
for communication. All cameras run standard Linux and our distributed publish-
subscribe middleware system to provide a flexible software platform for software
development (cf. Chapter 11). The building blocks have been implemented in C++
and C# using the middleware services for communication and control.

Laboratory

Corridor

Lounge

1 2

3

5

4

6c

c

c c

c
c

Fig. 13.3 The smart camera network composed of six cameras deployed in an indoor environment.
The cameras are depicted by a black camera symbol and their FOVs are indicated by orange lines.
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(a) Camera 1, frame nr. 2069 (b) Camera 2, frame nr. 688 (c) Camera 3, frame nr. 719

(d) Camera 4, frame nr. 1027 (e) Camera 5, frame nr. 2593 (f) Camera 6, frame nr. 1760

Fig. 13.4 Snapshots (a) to (f) of cameras 1–6 at different times. The images show the status of
object tracking over time; the system tracks three people who are marked by red, blue and green
bounding boxes, respectively.

13.5.2 Tracking Results

For the evaluation of our object tracking block we use the smart camera network
with people walking through the indoor environment (as depicted in Fig. 13.4). The
performance metrics used in the evaluation process are based on state-of-the-art
metrics in the area of object tracking and multi-camera systems [31, 431, 422].
Detection of people and people tracking are evaluated per camera and across all
cameras. Performance metrics such as sensitivity, precision and accuracy are used in
the case of object detection evaluation. High-level metrics such as correct detected
track (CDT), track detection failure (TDF) and false alarm track (FAT) show an
overall view of performance of the tracking system.

Tables 13.1 and 13.2 summarise the results of a typical scenario of concurrently
tracking three selected persons independently walking around in the indoor envi-
ronment for around 120 seconds. While the former shows for each camera the sen-
sitivity and CDT for object detection and object tracking, respectively, the latter
summarises the percentage of correct objects tracked between cameras. In this sce-
nario, the tracked persons were not continuously visible to all cameras; at some
points, participants were not seen by any camera at all. The cameras mounted in the
laboratory (cameras 1–4) achieved better detection and tracking results compared
to the performance of cameras 5 and 6. Here the tracking performance degraded
slightly due to changes in lighting and object appearance.
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Table 13.1 Performance of object detection and object tracking: single camera evaluation

Camera Object detection: Object
number Sensitivity tracking: CDT

1 0.78 3
2 0.73 2
3 0.87 3
4 0.76 3
5 0.48 2
6 0.54 2

Table 13.2 Performance of correctly tracked objects between cameras

Camera pair (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,6) (4,5) (5,6)
Percentage 66.67 100.00 100.00 66.67 66.67 66.67 33.33 100.00 66.67 66.67 66.67
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Fig. 13.5 The graph shows the learnt topology at various times of the experiment exploiting the
trading behaviour. The thickness of the red line indicates the pheromone level of the link.
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13.5.3 Topology Learning

Our self-aware topology learning block builds up a neighbourhood relationship
graph locally on each camera. Figure 13.5 shows snapshots of the graph for the
entire network at various time steps in a typical test run. The thickness of the red
lines indicates the strength of the artificial pheromone deposit on this link, and cor-
responds to the probability of an object transiting between the connected cameras.
Initially, links are created between the camera in the lounge (camera 6) and those in
the laboratory (cameras 1–4) due to misdetections of camera 5. Nevertheless, due to
the evaporation of the artificial pheromones, these inaccurate links are “forgotten”
over time. Furthermore, cameras can deal not only with errors induced by the track-
ing block but also with changes in the topology due to hardware errors, vandalism,
or maintenance when cameras are being removed, added, or moved to a different lo-
cation. Over time invalid links evaporate and a qualitatively correct neighbourhood
graph emerges again.

13.5.4 Communication and Utility Trade-off

We evaluated the effect of the handover strategy on the overall tracking utility
and communication overhead. Figure 13.6 depicts this trade-off between utility and
communication for homogeneous strategy selection in our smart camera network.
The utility is defined as the aggregated tracking utility of all cameras, and the com-
munication is defined as the number of all sent auction messages during the entire
tracking operation. Both utility and communication values are normalised by those
from the best strategy (i.e., ACTIVE BROADCAST). The six strategies result in six
different trade-offs for utility and communication. An operator overseeing the net-
work can select a strategy based on the current situation and needs. These require-
ments may vary for example when the attention is directed from general surveillance
to tracking a single person.

In addition, we also analysed homogeneous and heterogeneous strategy assign-
ments, as well as dynamic strategy selection during runtime and their achieved
trade-off in our CamSim simulation tool1 [123]. Obviously, heterogeneous selection
(black crosses) leads to many more outcomes in the objective space. The extension
of the Pareto efficient frontier brought about by heterogeneity in comparison to the
results by homogeneity is also apparent. However, it is also clear that the outcomes
of many heterogeneous strategies are dominated, and many are strictly worse than
the original outcomes from the homogeneous strategies. As an operator deploys net-
works in partially unknown environments and cannot foresee the dynamic behaviour
of the objects, an optimal heterogeneous selection is impossible. This clearly ben-
efits the self-expressive behaviour of our cameras, facilitating a dynamic strategy

1 http://www.epics-project.eu/CamSim/
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Fig. 13.6 Performance for two exemplary scenarios from our smart camera network showing
homogeneous (red and blue squares), heterogeneous (black crosses), and dynamically learned
strategy assignments (coloured symbols). The results have been normalised by the maximum
value of the ACTIVE BROADCAST strategy and are averages over 30 runs with 1,000 time steps
each [239, 238].

selection. Dynamic strategy selection (coloured symbols) is able to outperform the
static (homogeneous and heterogeneous) strategies and to extend the Pareto front.

13.6 Conclusion and Outlook

This chapter presented how self-awareness and self-expression were implemented
in a real smart camera network for a person tracking application. By enabling each
camera to learn about its environment, its topology, and its performance, the entire
network was able to perform continuously well to achieve a common goal. The fa-
cilitated building blocks allowed the camera network to face various challenges such
as the limitation of available resources of the cameras, the continuous changes in a
real scenario and the intrinsic problem of robustness in people tracking. These six
different building blocks, encapsulating the entire processing, were embedded into
resource-limited smart camera nodes and aggregated into a completely decentralised
and thus scalable network.
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Fig. 13.7 Performance for two exemplary scenarios from our simulation environment showing
homogeneous (red and blue squares), heterogeneous (black crosses), and dynamically learned
strategy assignments (coloured symbols). The results have been normalised by the maximum
value of the ACTIVE BROADCAST strategy and are averages over 30 runs with 1,000 time steps
each [239, 238].

Nevertheless, the different blocks are implemented at different levels of self-
awareness and self-expression. While the object tracking block is only stimulus-
aware, other blocks such as the object handover, topology learning, or strategy se-
lection are interaction-aware, time-aware, and meta-self-aware, respectively. Merg-
ing the different blocks in every single camera allows each camera, and by extension
the entire network, to achieve higher levels of self-awareness and self-expression.
However, one could still introduce additional blocks or refine existing ones in or-
der to improve the overall performance. An example would be the object handover
block which currently combines multiple strategies, each one consisting of an auc-
tion schedule and a communication policy. In the presented version, the auction
schedules are static for all cameras, and communicate either at regular intervals or
when the object is at a specified position within the FOV of the camera. In contrast,
a camera could learn the best timing for a handover during runtime. In such a set-
ting, the camera could start with an active approach and refine the timing based on
the received bid in the advertised auctions.

The concepts of computational self-awareness and self-expression are not limited
to camera networks alone. The previous chapter presented another application and
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the next chapter introduces a third one using real-time interaction between humans
playing music. In fact, we are confident that self-awareness and self-expression
could serve as an enabling technology for future systems and networks, meeting
a multitude of requirements with respect to functionality, flexibility, performance,
resource usage, costs, reliability and safety.
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7. Agne, A., Platzner, M., Lübbers, E.: Memory virtualization for multithreaded reconfig-
urable hardware. In: Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), pp. 185–188. IEEE Computer Society (2011). DOI
10.1109/FPL.2011.42

8. Ahuja, S., Carriero, N., Gelernter, D.: Linda and friends. IEEE Computer 19(8), 26–34
(1986). DOI 10.1109/MC.1986.1663305

9. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A quality-driven sys-
tematic approach for architecting distributed software applications. In: Proceedings of the
27th International Conference on Software Engineering, pp. 244–253. ACM (2005). DOI
10.1145/1062455.1062508. URL http://doi.acm.org/10.1145/1062455.1062508

10. Ali, H.A., Desouky, A.I.E., Saleh, A.I.: Studying and Analysis of a Vertical Web Page Clas-
sifier Based on Continuous Learning Naive Bayes (CLNB) Algorithm, pp. 210–254. Infor-
mation Science (2009)

11. Alippi, C., Boracchi, G., Roveri, M.: Just-in-time classifiers for recurrent concepts. IEEE
Transactions on Neural Networks and Learning Systems 24(4), 620–634 (2013)

12. Amir, E., Anderson, M.L., Chaudhri, V.K.: Report on DARPA workshop on self-aware com-
puter systems. Tech. Rep. UIUCDCS-R-2007-2810, UIUC Comp. Sci. (2007)

13. ANA: Autonomic Network Architecture. URL www.ana-project.org. (accessed March 8,
2016)

14. Angelov, P.: Nature-inspired methods for knowledge genera-
tion from data in real-time (2006). URL http://www.nisis.risk-
technologies.com/popup/Mallorca2006 Papers/A333 13774 Nature-
inspiredmethodsforKnowledgeGeneration Angelov.pdf

15. Apache: Hadoop. http://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html. (Accessed
March 8, 2016)

16. Araya-Polo, M., Cabezas, J., Hanzich, M., Pericàs, M., Rubio, F., Gelado, I., Shafiq, M.,
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