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ABSTRACT
With the emergence of the internet of things (IoT) and
participatory sensing (PS) paradigms trustworthiness of re-
motely sensed data has become a vital research question. In
this work, we present the design of a trusted sensor, which
uses physically unclonable functions (PUFs) as anchor to en-
sure integrity, authenticity and non-repudiation guarantees
on the sensed data. We propose trusted sensors for mobile
devices to address the problem of potential manipulation of
mobile sensors’ readings by exploiting vulnerabilities of mo-
bile device OS in participatory sensing for IoT applications.
Preliminary results from our implementation of trusted vi-
sual sensor node show that the proposed security solution
can be realized without consuming significant amount of re-
sources of the sensor node.
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1. INTRODUCTION
The internet of things (IoT) is envisioned to be a network

of pervasively present physical objects, embedded with sen-
sors and actuators. These objects can interact and coop-
erate with each other through unique addressing to create
smarter environments/spaces permeating in domains such
as transportation, cities, health-care, energy, tourism, and
industry [29]. Sensors have an essential role in this emerging
new paradigm. Participatory sensing (PS) is an interesting
sensing approach that aims to include the smartphones in
the sensing loop and utilize them as sensory stations taking
a multi-sensor snapshot of their immediate environment. By
intelligently combining these individual sensor readings it is
possible to create a clear picture of the physical world that
can be used as an input to various IoT applications such as
urban sensing [3], health-care [1] and citizen journalism [2]
etc.
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The scale and ubiquitous nature of this sensing paradigm
present a multitude of challenges: First, PS is open to public
participation. Sensor readings obtained with mobile device
sensors carry no security guarantees. The lack of integrity
and authenticity guarantees on mobile sensor readings [22]
and security flaws in mobile OS (e.g., Fake ID [24], and
Master Key [25]) allow malware, such as worms, to launch
data pollution attacks on a central server database by up-
loading manipulated or fabricated sensor readings [22, 8].
Malicious users can submit false readings to increase their re-
ward which could be either monetary, reputation, or service
quota. Preventing these data pollution attacks is a major
challenge in participatory sensing. Second, one approach to
counter these attacks is to provide integrity and authenticity
guarantees on the sensor readings right from the onset; how-
ever, any sensor-centric solution for making sensor readings
trustworthy must be lightweight for the resource-constrained
sensors. Third, a variety of sensors with different amount of
resources and processing capabilities have found their way
into the mobile devices. Therefore presenting a generic so-
lution for a wide spectrum of sensors is another challenge.

In this paper, we present the design of trusted sensors,
which offer integrity, authenticity and non-repudiation guar-
antees on the sensed data by leveraging PUFs as root of
trust. Sensed data integrity, authenticity and non-repudiation
is ensured by having the sensor firmware sign the data, and
integrity of the firmware is achieved by secure boot of the
sensor. The on-chip PUF serves as secure key storage for
digital signatures and secure boot processes. The security
of the design relies on proven properties of the underlying
primitives, i.e., physical unclonability and tamper-evidence
of PUFs, and existential unforgeability of digital signatures.
Current approaches such as trusted platform module (TPM)
based trusted sensors propose the integration of TPM into
the sensor nodes. This requires extensive hardware modifi-
cations to the resource constrained sensors which might be
uneconomical for low-end sensor nodes. This PUF-based de-
sign maps onto a typical low-end sensor hardware and does
not require any hardware modifications. Although, we are
primarily focused on mobile sensors, this design is also ap-
plicable to standalone sensors for IoT applications.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system and threat models. Section 3 dis-
cusses previous work in areas of physically unclonable func-
tions and trusted sensors, and Section 4 introduces building
blocks and presents architecture of the proposed trusted sen-
sor. Section 5 addresses various design challenges to enable



trustworthy participatory sensing by incorporating the pro-
posed trusted sensors in mobile devices. It also presents a
road-map for privacy-aware trustworthy participatory sens-
ing. Section 6 discusses implementation status of the pro-
posed work and presents preliminary results and Section 7
concludes this paper.

2. SECURITY MODEL
In this section, we describe the architecture of participa-

tory sensing system, the threat model, the security goals
that we aim to achieve, and our trust assumptions.

2.1 System Model
Entities that participate in a typical participatory sens-

ing task are a querier (Q), a participatory sensing server
(PSS), and mobile nodes (MNs). In a given participatory
sensing application, Q is an end-user interested in receiving
the sensed data. It is also referred to as client of the appli-
cation. PSS is a central entity in the participatory sensing
infrastructure that governs a sensing task. It is responsi-
ble for receiving queries from Q, creating new sensing tasks,
collecting sensed reports from the participating MNs, ex-
tracting meaningful information from the sensed data and
providing Q with this information. MNs are the mobile de-
vices, equipped with a multitude of sensors, that can con-
tribute sensed data to a sensing task. A client application
(App), installed on the MN, reads the mobile sensors using
underlying operating system APIs and forwards the sensed
reports to the PSS. A generic sensor node architecture is il-
lustrated in Figure 1. MNs can leverage Wi-Fi or a cellular
network service to submit their reports to the PSS. Report is
a data structure which contains sensed data and associated
metadata such as location of the sensor and time-stamp of
sensed reading.

2.2 Threat Model
In this work, we address attacks to manipulate or fabri-

cate sensed data by compromising mobile OS. We consider
malicious mobile device custodians or malicious third party
as adversary. The adversary is assumed to be able to com-
promise the OS on the host device. Our goal is to ensure
authenticity of sensing hardware as well as integrity and non-
repudiation of sensed readings to remote server. Attacks
based on the internet and sensor networks such as denial
of service or selective forwarding are not considered in this
work. We recommend implementation of PUF on the sensor
controller. However, if sensing unit is leveraged for PUF in-
stantiation, we assume that the communication between the
sensing unit and the controller cannot be compromised by
the adversary. When used as PUF, the sensor SRAM should
be initialized immediately after it has been read during the
sensor boot-up. This renders the SRAM PUF unavailable
for the adversary. The client application, App, running on
the mobile device is assumed to be trusted by the PSS and
is verifiable through remote attestation.

3. RELATED WORK

3.1 Physically Unclonable Functions (PUFs)
PUFs are lightweight, energy efficient hardware security

primitives which typically exhibit a challenge-response be-
havior. When queried with a challenge c, the PUF gen-
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K ← Hash(r) where e is the error vector
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K ← Hash(r)

Table 1: Code-offset and syndrome constructions.

erates a response r, that depends on c and the uncontrol-
lable CMOS manufacturing details of the underlying hard-
ware. Since these manufacturing variations are random and
unique for every PUF instance, the corresponding PUF out-
put is also random and unique. Randomness, uniqueness,
unclonability, and tamper resistance make PUFs interesting
candidates for cryptographic applications such as key gen-
eration and authentication.

A PUF’s challenge-response behavior does not correspond
to a random oracle as a PUF response is not perfectly re-
producible and is non-uniformly distributed. Multiple re-
sponses obtained from the same PUF slightly differ from
one another. A commonly used measure to quantify this er-
ror (also called noise) is the Hamming distance. The Ham-
ming weight is used to measure the deviation of a PUF re-
sponse from a uniform distribution. A PUF-enabled de-
vice is authenticated if the Hamming distance between a
regenerated response and the one recorded during manu-
facturing is negligible. When used as a secret key, a PUF
response needs to be perfectly reproducible and uniformly
distributed. To make the PUF response reproducible and
uniformly distributed a helper-data algorithm (HDA), that
features a fuzzy-extractor or a secure-sketch scheme [7], is
required. The HDA consists of two stages: information rec-
onciliation which deals with noise by using error-correction
codes and privacy amplification which uses a hash function
to ensure a nearly uniform PUF response.

A PUF-based key is generated in two phases: (i) key en-
rollment and (ii) key regeneration. Enrollment is a one-time
process, performed during manufacturing in a secure and
controlled environment. During this phase, based on the
PUF response r, helper data W and a key K are generated.
Helper data is integrity protected, publicly stored informa-
tion. Later in the field, the PUF is re-evaluated resulting in
a slightly noisy response r′. W and r′ are fed as input to the
regeneration phase where error correction of r′ is performed
to obtain r (if Hamming distance(r, r′) ≤ t, where t is error
correction capacity of the selected code C). This reproduced
PUF output is fed to the privacy amplification stage, com-
monly employing a universal hash function, which results in
a fixed length bit string to be used as a key or a random
seed for key-pair generation. Two constructions of fuzzy
extractors namely Code-Offset and Syndrome Construction
dominate the HDA implementation landscape. In a fuzzy
extractor, enrollment and reconstruction phases are called
Gen and Rep respectively as illustrated in Table 1.

A number of PUF circuits have been reported so far.
Based on their working principle [18], PUFs are often catego-
rized into delay-based PUFs e.g., arbiter PUF [17] and ring
oscillator PUF [11] and memory-based PUFs e.g., SRAM



PUF [14]. The former approach exploits the delay difference
experienced by signals on two equal paths whereas the lat-
ter approach exploits the random start-up values of SRAM
memory cells. Based on their available challenge space,
PUFs are categorized as either weak or strong. Weak PUFs
offer only a few challenge-response pairs (CRPs) which scale
linearly with the required logic area on an IC. They are used
for secret key generation. A popular example is the SRAM
PUF. Strong PUFs offer a huge number of CRPs which often
scale exponentially with the required logic area. They ex-
ceed the requirements for key generation and are promoted
for lightweight authentication without cryptographic primi-
tives. The arbiter PUF is a prominent example for a strong
PUF.

3.2 Trusted Sensors
Early work on trusted sensors [8] was motivated by partici-

patory sensing. Trusted computing hardware such as trusted
platform module (TPM) was proposed for mobile devices to
attest the sensed data. Saroiu and Wolman [22] proposed
the integration of TPM into the mobile device sensors which
may not be an economical solution for resource constrained
embedded applications. Moreover, TPMs are vulnerable to
physical attacks. Winkler et al. [30] introduced TPM to
secure embedded camera nodes. Potkonjak et al. [20] pro-
posed an alternative approach for the trusted flow of in-
formation in remote sensing scenarios that employed public
physically unclonable functions (PPUFs). PPUFs are hard-
ware security primitives which can be modeled by algorithms
of high complexity. As a result, PPUFs enable public key
cryptography without using cryptographic primitives. For
any given input, the PPUF hardware (secret key) output
is many orders faster than its software counterpart (pub-
lic key). However, current PPUF designs involve complex
circuits requiring high measurement accuracy which slows
down the authentication process and therefore it is not a
scalable solution. Rosenfeld et al. [21] presented the idea of
a sensor PUF, whereby the PUF response depends on the
applied challenge as well as the sensor reading. In a recent
work, Cao et al. [5] proposed a CMOS image sensor based
weak PUF, which generates response bits by exploiting the
random fixed pattern noise in a selected pixel pairs.

Our approach uses on-chip PUF to serve as identity of the
sensor and provide secure keys for ensuring non-repudiation
of the sensed data as well as integrity of the sensor firmware.
With reference to TPM-based solutions, this PUF-based de-
sign is lightweight, has better physical security properties,
and requires no modifications in the sensor hardware. Com-
pared to PPUF based approach, PUFs offer simpler, faster
and scalable solution.

4. PUF-BASED TRUSTED SENSOR
A typical sensor node comprises a sensing unit, an ana-

log to digital converter (ADC), a controller, a power source
and an external memory as illustrated in Figure 1. The con-
troller controls the functionality of the other components of
the sensor node and performs data processing. The most
common choice for the controller is a lightweight micro-
controller (MCU) due to its low cost, ease of programming
and low power consumption. Alternatives include System
on Chip (SoC) and FPGAs for applications such as real-
time video processing for image sensors. In this section,
we discuss three security features: PUF-based Secure Key

Figure 1: Overview of PUF-based trusted sensor de-
sign.

Generation and Storage, Sensed Data Attestation, and Se-
cure Boot of Sensor Controller which serve as the building
blocks of the trusted sensor design and can be realized us-
ing existing resources on a typical sensor node (Figure 1).
PUF-based Secure Key Generation and Storage module pro-
vides secure keys to (i) Sensed Data Attestation to ensure
integrity and non-repudiation of sensed data as it leaves the
trusted sensor and (ii) Secure Boot of Sensor Controller to
ensure integrity of the sensor platform at every boot-up.

4.1 PUF-based Key Generation and Storage
We propose PUF-based secure key generation and storage

on the resource constrained trusted sensor nodes, by lever-
aging the framework [13] we proposed earlier. A PUF-based
key generation approach offers (i) a unique key for each sen-
sor based on the intrinsic properties of sensor hardware, (ii)
a low-cost, secure storage of the key, (iii) a binding of the
key to the node, and (iv) the availability of the key with neg-
ligible probability of failure. For details on the PUF-based
key generation process see Section 3.1. The architecture of
the PUF-based key generation and storage module has two
cascaded components: a PUF source and the helper data al-
gorithm (HDA). The design of HDA depends on the choice
of the PUF source.

4.1.1 PUF source
Various PUF sources are either inherent to a typical sen-

sor node or could be implemented using existing sensor re-
sources: (i) Uninitialized on-chip SRAM, available on most
lightweight MCUs as well as SoCs, have PUF properties
and can be used as SRAM PUF [28]. (ii) If SRAM is ei-
ther not available or gets initialized at the start up, a ring-
oscillator (RO) PUF can be implemented in ASIC (sens-
ing unit) or FPGA section of SoC (controller). However,
RO PUFs add some hardware overhead. (iii) Various sen-
sor specific PUFs [5, 21] have been identified which exploit
the manufacturing variations in the sensing circuitry. For
instance, CMOS image sensor based PUF [5] exploits the
random fixed pattern noise in a selected pixel pairs. (iv)
The calibration errors of mobile sensors such as accelerome-
ter and microphone have also potential to uniquely identify
mobile device [4]. However, whether these identifiers carry
enough entropy to be used as cryptographic keys (PUFs) is
not yet established and is an active research topic.



4.1.2 Helper Data Algorithm
The Helper Data Algorithm (HDA) (see Section 3.1) en-

sures (i) a perfectly reproducible PUF response under a
range of environmental and operating conditions, i.e., the
Hamming distance between any two responses from the same
PUF is zero, and (ii) an almost uniformly distributed PUF
response, i.e., the Hamming weight of any PUF response is
around 50%. The helper data algorithm is designed based
on the error-rate (the Hamming distance between two re-
sponses obtained from the same PUF instance over worst-
case environmental and voltage changes) and the entropy of
the PUF source. Guajardo et al. [12] showed that SRAM
PUFs have a secrecy-rate of 0.76 bits/SRAM bit. Indepen-
dent response bits from RO PUF also have a high entropy.
The Hamming distance and Hamming weight of PUF re-
sponses follow a binomial distribution [27]. Assuming PUF
response bits to be independent, the probability that an n
bit regenerated PUF response will have more than t errors,
denoted by PFail, is given by [12]

PFail =

n∑
i=t+1

(
n

i

)
pb

i(1−pb)n−i = 1−
t∑

i=0

(
n

i

)
pb

i(1−pb)n−i

(1)
where pb is the bit error probability (error-rate) of PUF
response bits. PFail is desired to be negligible, i.e., ≤ 10−6.
Based on the desired values of t, n, PFail, and the nature
of errors, the error correcting code is selected. The selected
code determines the number of source bits, i.e., the number
of PUF response bits required to obtain the desired number
of error free bits.

Error correction results in entropy loss which corresponds
to the maximum number of helper data bits λ exposed. For
instance, let us assume an {n, k, t} linear block code in the
code-offset or syndrome construction. The PUF generates n
bits, and during HDA phase n−k bits of helper data (public
information) is produced. So the entropy loss is given as
λ = n − k. If n′ is the minimum entropy of the n-bit PUF
response, with a λ bit loss, the residual entropy n′−λ should
be sufficient for required key. Hashing compresses the error
corrected response into a smaller bit string with the same
entropy thereby increasing the entropy per response bit.

4.2 Sensed Data Attestation
The goal of sensed data attestation is to prevent any ma-

nipulation of the trusted sensor readings by the mobile OS.
Using the PUF response as a source of randomness, a public-
private key pair, so-called attestation key, is generated and
the sensed data is signed with the private half of the attes-
tation key before it leaves the sensor. Therefore, integrity
and authenticity of the sensed data are ensured independent
of the state of the mobile OS and can be verified by a re-
mote entity, e.g., by verifying the signatures on the sensed
data. Attestation can be realized using the Elliptic Curve
Digital Signature Algorithm (ECDSA) as the hardness of
elliptic curve discrete logarithm problem (ECDLP) offers
much smaller sizes for domain and key parameters compared
to RSA and DL based schemes. This in turn affects the
performance (i.e., computation and energy consumption) of
cryptographic algorithms based on these schemes. Data at-
testation can be implemented in the firmware of the sensor
controller.

4.3 Secure Boot of Sensor Controller
Secure boot initializes an embedded system with a trust-

worthy configuration. Secure boot, using PUF generated
key, can bind the trustworthy firmware with the PUF-enabled
hardware. PUF-based secure boot of the sensor node con-
troller ensures trustworthiness of the firmware at every boot
up thereby providing deterrence against the attacks aimed
at manipulating the sensor firmware. When an embedded
system is initialized, boot-loader is the first code that exe-
cutes before the main program (i.e., firmware or OS kernel)
and is responsible for initializing the necessary hardware,
loading the firmware, and passing on the system control to
the firmware.

Secure boot requires the boot process to start with a
trusted, immutable code and every phase of boot process
must verify the integrity of next phase before passing on the
system control to the next phase. To meet the first require-
ment, the first piece of boot code can be placed in immutable
memory, written to only by the manufacturer. For low-end
MCUs, the boot-loader is a small piece of code and can fit
into on-chip immutable memory such as a masked ROM. For
complex SoCs, the boot-loader is large and is executed in
multiple stages. The first stage boot-loader (FSBL) is gen-
erally smaller in size and can reside in the immutable ROM.
Other stages of the boot-loader, the firmware and the OS
kernel reside in the external flash memory as illustrated in
Figure 2. The integrity of every stage of boot process can
be verified either (i) using symmetric key techniques i.e., by
verifying the hash and decrypting the previously encrypted
next phase boot code or (ii) using asymmetric key techniques
i.e., by verifying signatures of the next phase boot code. If
the verification succeeds the system control is transferred to
next executable code, otherwise the boot process is aborted.
Start of the boot process with the immutable code and vali-
dation of each next phase by the previous phase of the boot
process ensures a chain-of-trust all the way from FSBL to
firmware, OS kernel or applications. Using the PUF-based
key for boot code validation additionally binds the trusted
firmware to the sensor hardware.

PUF-based secure boot is implemented in two phases: en-
rollment and regeneration. Enrollment is one time process,
performed during manufacturing, during which PUF-based
key and helper data are generated by Phase 0 boot code and
subsequent Phase 1 code e.g., SSBL or firmware is either
signed or encrypted-then-hashed using PUF-based key. For
multi-stage boot process, PUF response could be used as se-
cure seed for PRNG to generate separate keys for validating
every phase of boot process. Hash or signature values calcu-
lated during enrollment and the verification algorithms are
also saved in the immutable ROM to be used in regeneration
phase. Regeneration is performed at every boot-up. During
Phase 0 code execution from the masked ROM, PUF-based
key is regenerated using the helper data saved during enroll-
ment. Before passing on the system control to Phase 1, it
is loaded from the flash, decrypted and its integrity is val-
idated using the reference hash or signature values present
in the immutable ROM. This chain of verification at every
stage of boot process leads to initialization of MCU or SoC
in known, trusted configuration as illustrated in Figure 2.
Schaller et al. [23] recently proposed an SRAM PUF based
anti-counterfeit solution that binds the firmware with the
hardware.



Figure 2: Overview of PUF-based secure-boot pro-
cess for low-end MCU based low-end devices (e.g.,
sensor nodes) and SoCs based complex embedded
systems (e.g., mobile devices).

4.4 Trusted Sensor Architecture
Figure 1 illustrates how the proposed features of a trusted

sensor can be mapped onto a typical low-end sensor node
without any significant hardware modifications. The choice
of the PUF source determines whether it can be realized
on the sensing unit (sensor PUFs) or the sensor controller
(SRAM PUF, RO PUF etc.) Sensed data attestation is im-
plemented in the firmware of the sensor controller, which
receives the sensed data from the sensing unit, signs it and
sends it to output interface of the sensor node. Secure boot
is achieved by modifying the boot-loader of the sensor con-
troller. This PUF-based approach provides integrity, au-
thenticity and non-repudiation on sensed data right from
the onset. Hardware state of the sensor is protected by the
tamper resistance of the on-chip PUF. Trustworthiness of
the sensor firmware is ensured by secure boot. If incorpo-
rated in the mobile devices, these trusted sensors can provide
protection against attacks aimed at manipulating the sen-
sors’ readings at mobile OS level as sensed data leaves the
trusted sensor along with signatures.

4.5 Security Discussion
The integrity and non-repudiation of sensed data is en-

sured by having sensor firmware sign the data. Manipulating
a mobile device based trusted sensors’ readings by exploit-
ing the mobile software stack requires existential forgery of
ECDSA, the employed digital signature scheme. However,
ECDSA has been proven existentially unforgeable against
adaptive chosen-message attacks under generic group and
collision-resistant hash assumptions. Integrity of the sensor
firmware is verified during every boot-up. If any manipula-
tion in the firmware is detected, the boot process is aborted
and respective error code is returned to the client appli-
cation. PUF modeling attacks are not relevant for weak
PUFs however, other attacks can be realized with invasive
or non-invasive techniques. PUFs are tamper-proof which
makes the trusted sensor robust against the invasive attack
techniques. The non-invasive techniques i.e. side-channel
attacks on PUF can be deterred by breaking the correlation
between the leaked information and the circuit operation e.g.
by reduction/elimination of the leaked information. How-

ever, we did not implement these countermeasures in our
implementation. During the enrollment phase, an additional
hash value of the helper data can detect any manipulation
in the helper data later. If an additional link-list contain-
ing RO pairs has to be stored as well, it has to be included
in the hash as well. Another potential point of attack is
error correction code if used in a code-offset construction.
Codeword-masking [20] uses the linearity of the used code
as a countermeasure and provides deterrence against differ-
ential power analysis (DPA) attacks.

5. TRUSTWORTHY PARTICIPATORY SENS-
ING WITH TRUSTED SENSORS

As described in Section 2.1, the main entities involved in
a participatory sensing task are the sensors embedded in
the mobile hardware, a client application (App) that runs
on the mobile device, and a remote server (PSS). To ensure
integrity of the sensed data right from the onset, we pro-
pose the incorporation of the PUF-based trusted sensors in
the mobile devices. However, in order to ensure trustwor-
thy participatory sensing few design challenges need to be
addressed.

First, an individual trusted sensor (other than GPS) does
not provide any guarantees on time and location of the
sensed data. Such knowledge is crucial since standalone sen-
sor readings are much less useful than sensor readings with
time and location information. Today almost every mobile
device is equipped with a GPS receiver which allows it to
accurately determine its position and time. Signed location
and time values from the trusted GPS (proposed design in-
tegrated into the GPS module) can provide proof of location
and time.

Second, how to bind the readings from multiple trusted
sensors (e.g. camera and GPS)? We suggest that the client
App provides a nonce to the trusted camera and the GPS
while requesting the sensed data. Each sensor appends the
nonce to its freshly sensed data and signs it. The client ap-
plication verifies the received sensed data from the camera
and the GPS using the nonce and binds the data from two
sensors upon successful verification. This simple approach
ensures fresh data from multiple trusted sensors. However,
the underlying assumption in this approach is that the delay
between multiple sensors’ responses, especially between GPS
and other sensors, does not exceed a threshold. The value
of this threshold is application specific and is left to the ap-
plication developers. Another assumption in this approach
is that the client application (App) running on the mobile
device, performs its functionality as assigned by the remote
server, PSS, i.e., in trustworthy manner. Remote software
attestation [26, 10, 15, 16] provides the mechanism whereby
the integrity of code running on an untrusted hardware can
be remotely verified.

The mobile device registers with the PSS by download-
ing the client application (App). The PUF-enabled mo-
bile sensors are authenticated by App on providing proof of
knowledge of PUF-response to randomly selected challenges.
Once authenticated, trusted sensors output signed data to
the App. The App can verify the signatures on individual
sensor readings, strip the signatures, bind multiple readings
together and forward this data to the server in secure man-
ner either using encrypt-then-MAC or signcryption.



5.1 Towards Privacy-Aware Trustworthy Par-
ticipatory Sensing

Successive submission of signed sensed data can however
reveal sensitive personal information about the mobile de-
vice custodian to the PSS, for instance, location trace of the
user can reveal frequently visited places such as home, work,
religious affiliations, and entertainment interests etc. The
user privacy can be protected by ensuring unlinkability be-
tween successively submitted sensor readings by a user. We
foresee a pseudonym based scheme as a potential solution
for user privacy. A pseudonym is a unique identifier that al-
lows authentication of pseudonym holder without knowledge
of his real identity. A pseudonym can offer pseudonymity
as all actions authenticated with this pseudonym are link-
able to each other but not to pseudonym holder’s real iden-
tity. Pseudonymity in participatory sensing is vulnerable
to inference based attacks. However, if an entity holds a
set of pseudonyms and changes its pseudonym over time,
the actions performed with different pseudonyms could nei-
ther be linked to each other nor to the real identity of these
pseudonym holder thereby providing unlinkability.

One way to achieve this is by having a strong-PUF based
pseudonym generator on the mobile device. This scheme re-
quires a trusted third party (TTP) in the infrastructure such
as a pseudonym registration authority (PRA). To generate
a pseudonym, a random challenge is given to the strong-
PUF. Using the PUF response, a public-private key pair is
generated which serves as a pseudonym. Pseudonym acts
as a short-term identifier of the mobile device for submit-
ting sensor readings to the PSS. Before a mobile can use
a pseudonym to contribute sensed data to the application
server, the pseudonym needs to get registered with the PRA,
which keeps track of the mapping between the long-term
identity and the currently active pseudonym of the mobile
device. Upon successful registration, the PRA certifies the
active pseudonym of the mobile device. The registration of
a pseudonym with the PRA ensures that at any given time
a registered mobile device has only one active pseudonym.
Using the active pseudonym and the certificate from PRA,
the mobile device can register and contribute sensed data to
the PSS. After a random time interval, a pseudonym change
process is initiated by the mobile device. During pseudonym
change, a new pseudonym is generated and is registered with
the PRA. Upon successful pseudonym change, the PRA up-
dates the active pseudonym in its database. PRA can com-
municate the list of inactive/revoked pseudonyms to the
PSS to prevent Sybil attacks. For effectiveness, pseudonym
change must encompass all network layers [9] to prevent any
trivial linking between the pseudonyms [19] using IP or MAC
address. Moreover, to make pseudonym change effective it
is recommended that multiple mobile devices change their
pseudonyms simultaneously. Identification of such situations
is out of the scope of this work.

6. TRUSTED SENSOR IMPLEMENTATION
In this section, we present preliminary results from our im-

plementation of a PUF-based key generation module for the
prototype trusted visual sensor node (VSN) shown in Fig-
ure 3. The prototype VSN uses an Omnivision’s 5642 image
sensor and Xilinx’s Zynq7010 SoC as the sensor controller.
The SoC is comprised of reprogrammable logic equivalent to
≈ 430k ASIC gates and dual ARM Cortex-A9 cores. The

Figure 3: Trusted camera prototype

basic sensor readout functionality is implemented on the SoC
as depicted in Figure 4. In summary, the ARM Cortex-A9
configures the image sensor for 640x480 pixels, YUV 4:2:2
color space and 15fps. The Format Adapter reads the image
sensor using camera parallel interface and converts it to an
AXI streaming interface. DMA uses triple buffers to tem-
porarily store the video data in external SDRAM. The pro-
cessor reads the stored data, performs basic image process-
ing and enhancement algorithms e.g., edges enhancement
and transmits this video frames to a host PC using an Eth-
ernet connection. This prototype is realized as a modular
design comprised of three modules: PUF based key genera-
tion, sensed data attestation, and secure boot of sensor con-
troller to be implemented on the SoC. Initial results from
the PUF based key generation and storage module are dis-
cussed here, where as implementation of rest of the modules
is ongoing work.

6.1 PUF-based Key Generation Module
The goal of this module is to generate a 128 bit key

with high entropy. On Zynq7010 SoC, the available on-
chip SRAM gets initialized at the start up. Once initialized
SRAM cells cannot be used as PUF. Therefore, we imple-
mented a ring oscillator (RO) PUF. A total of 1344 3-stage
ROs were implemented using reprogrammable logic-area of
SoC by exploiting the Hard Macro utility in Xilinx ISE,
which assigns the same routing to each ring oscillator. Two
ROs are selected using multiplexers and the frequencies of
selected ROs are quantified by using two counters. In or-
der to achieve a fair comparison, a third reference counter
uses the board’s clock as an input and triggers the selected
ROs and their frequency measuring counters on and off syn-
chronously. When the reference counter reaches a predefined
value, it stops both counters. The values of the two coun-
ters are compared and the result is stored in a register. The
comparison of two counter values yields to a response bit.
However, each RO frequency change with varying environ-
mental and operating conditions. And more importantly,
the frequency of each RO changes at a different rate. So,
if two ROs being compared have slightly different frequen-
cies and their frequencies vary at different rates then there
is likelihood of a bit-flip in the PUF response with change
in temperature or voltage. Hence, choosing RO pairs that
produce reliable response bits can save considerable effort in
the helper data algorithm (HDA) phase. The simplest ap-
proach, called Chain of Neighbors (CoN) [6], is to compare
neighboring ROs, as they are expected to be exposed to sim-
ilar environmental conditions. Sequential Pairing Algorithm
(SPA) [31] pairs ROs with frequency difference greater than
threshold. Both approaches can produce up to bN/2c reli-



CoN Pairing SPA Pairing

Intra-Hamming Distance 7% 1.4%

Inter-Hamming Distance 49% 49%

Hamming Weight 49.3% 51.2%

Table 2: Noise, uniqueness and uniform distribution
of RO PUFs based on two RO pairing strategies i.e.
CoN and SPA.

Code (n, k, d) PFail # of source bits

RM (16,5,8) 2.401331 ∗ 10−3 410

Rep. (9,1,9) 3.770032 ∗ 10−7 1152

BCH (31,6,15) 1.338228 ∗ 10−7 662

Table 3: Comparison of error correcting codes for
2% bit error-rate.

able bits from N ROs. In our implementation, 672 bits were
generated from 1344 ROs. Table 2 summarizes the noise
(intra-Hamming distance), uniqueness (inter-Hamming dis-
tance) and uniform distribution (Hamming weight) of the
implemented RO PUF. These parameters are reported for
the two RO pairing strategies described above: Chain of
Neighbors (CoN) and Sequential Pairing Algorithm (SPA).
Results show that the error rate for SPA RO pairs i.e. 1.4%
is much less in comparison with neighboring-ROs based pairs
i.e. 7%. The Hamming weight of the PUF response in both
cases is ≈ 50%. The average inter-Hamming distance of the
PUF, evaluated on 9 boards, is ≈ 49%. Note that all mea-
surements are taken at room-temperature. Ongoing work
includes study of the effects of aging, temperature and sup-
ply voltage variations on the PUF response.

Based on our evaluation, the implemented RO PUF gen-
erates responses with an error rate i.e., pb = 1.4%, when
SPA is applied. In order to keep an additional safety mar-
gin a pb of 2% is assumed. The response bits are assumed
to be independent, with full entropy, as each RO is used just
once. Table 3 presents three different error correcting codes,
namely a Reed Muller (RM), Repetition and BCH code with
the given parameters. PFail is obtained by plugging in the
parameters values of the respective error correction code and
pb in Equation 1. The number of source bits is obtained by
calculating the rounds necessary to encode a 128 bit seed.
It can be seen that the selected BCH and repetition codes
fulfill the failure rate criteria, i.e., PFail ≤ 10−6. Moreover,
BCH(31, 6, 15) is also efficient in terms of the required num-
ber of source bits to generate a 128-bit key. The required 662
source bits for the BCH code could be obtained using 1344
ROs and SPA. Therefore, we implemented a HDA based on
the BCH(31, 6, 15) code in a code-offset construction. The
resulting 128-bit key can be used for the implementation of
sensed data attestation, and secure boot of the sensor con-
troller modules.

6.2 Preliminary Evaluation
Table 4 provides the FPGA logic area utilization of the

128-bit RO PUF-based key generation module on a Zynq7010
SoC. For reference, the FPGA area utilized by the image
readout of the VSN (see Figure 4) is also given. Consid-

Figure 4: High level architecture of ProSecCo visual
sensor node.

Registers Look Up Tables

Available 35, 200 17, 600

PUF Utilization 11% 22%

VSN Utilization 24.2% 40.7%

Table 4: Utilization of the implemented RO-PUF
solution on the FPGA.

ering that the RO PUF is the most expensive PUF source
in terms of logic area consumption, this initial comparison
indicates that PUF based key generation consumes an in-
significant amount of the total resources of a typical visual
sensor node. The choice of the SRAM PUF, the sensor PUF
and other PUF sources mentioned in Section 4.1.1 can save
this logic area on the sensor node. However, after complete
implementation and integration of sensed data attestation,
and secure boot of sensor controller modules, a detailed com-
parison of resource consumption is possible. Our goal is to
show that PUF-based trusted functionality can be achieved
in resource constrained sensors nodes without any hardware
modifications and without consuming significant amount re-
sources of the sensor node.

7. CONCLUSION
In this work, we presented a trusted sensor design which

leverages PUF as root of trust and offers trusted function-
ality. We term a sensor reading trusted if it is accompa-
nied by integrity, authenticity, and non-repudiation guaran-
tees on the sensed data, associated location and time-stamp.
We addressed the problem of potential manipulation of mo-
bile sensors’ readings by exploiting vulnerabilities of mobile
device OS in participatory sensing applications by propos-
ing incorporation of the trusted sensors for mobile devices.
Besides participatory sensing, there are plenty of scenar-
ios where deployment of trusted sensors can enhance the
reliability of offered services. Examples include safety re-
lated communication in vehicular networks, identification of
electricity theft in power distribution networks, surveillance,
reliable citizen journalism, and biometric authentication for
mobile payment applications. Initial results from our trusted
VSN prototype implementation shows that the proposed so-
lution for trustworthiness consumes insignificant resources
when compared with total resources of a typical VSN.
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