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Abstract. Embedded smart cameras are gaining in popularity for a number of real-time outdoor surveillance
applications. However, there are still challenges, i.e., computational latency, variation in illumination, and occlu-
sion. To solve these challenges, multimodal systems, integrating multiple imagers can be utilized. However,
trade-off is more stringent requirements on processing and communication for embedded platforms. To
meet these challenges, we investigated two low-complexity and high-performance preprocessing architectures
for a multiple imagers’ node on a field-programmable gate array (FPGA). In the proposed architectures, majority
of the tasks are performed on the thermal images because of the lower spatial resolution. Analysis with different
sets of images show that the system with proposed architectures offers better detection performance and can
reduce output data from 1.7 to 99 times as compared with full-size images. The proposed architectures can
achieve a frame rate of 53 fps, logics utilization from 2.1% to 4.1%, memory consumption 987 to 148 KB
and power consumption in the range of 141 to 163 mW on Artix-7 FPGA. This concludes that the proposed
architectures offer reduced design complexity and lower processing and communication requirements while

retaining the configurability of the system. © 2016 SPIE and IS&T [DOI: 10.1117/1.JE1.25.4.041006]
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1 Introduction

The advancement in related technological fields has enabled
the imaging sensors for ubiquitous applications, ranging
from indoor navigation and machine vision to outdoor sur-
veillance.!? These developments have resulted in the emer-
gence of concepts such as wireless sensor networks (WSN),
which consist of spatially distributed smart camera nodes.
The smart camera nodes are standalone devices able to per-
form analytics by processing data locally on the node and
then transmitting useful information to the end user. Because
of the scalability and easy integration into existing infrastruc-
ture, WSNs are expected to be deployed for applications
which are characterized by low latency, limited power avail-
ability, and low-rate wireless bandwidth.?

In relation to WSNSs, vision sensors are commonly used in
smart camera motes'* because of their complementary
metal-oxide-semiconductor (CMOS) process technology,
versatility, low cost, easy integration, and the availability
of ready-to-use imaging libraries. However, vision sensors
are sensitive to the visible range of the electromagnetic
spectrum, therefore, in poor ambient lighting conditions,
in the absence of external lighting sources, the objects
do not reflect enough light for the vision sensors. The chal-
lenges become more stringent for vision sensors under
certain environmental conditions, e.g., rain and horizontal
obscuration. Even when weather conditions are good and
there is sufficient lighting, the vision sensors are prone to
produce false positive results because of illumination

*Address all correspondence to: Muhammad Imran, E-mail: muhammad.
imran@miun.se
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variation, direct light, shadows, reflections, changing back-
ground, cluttered background, and occlusion.*?

To meet these challenges, there is an interest in augmenting
vision sensors with beyond-vision-range sensors such as
lasers and thermal sensors. Figure 1 shows visual and thermal
images of the same scene from vision and thermal sensors. In
the visual image, the infrastructure, i.e., the road, pole, and
construction frame, is detailed enough, whereas the persons
in the picture appear occluded by the frame and cluttered
with background. In the thermal image, however, the persons
are detailed enough, but the infrastructure information is not
sufficient, which is a result of thermal images being obtained
by sensing the radiation emitted from the objects. The emitted
radiation is a
ffected by the emissivity of the objects, temperature changes,’
and water droplets." Therefore, it is important to combine the
two sensors, as multisensor imaging data provide complemen-
tary information of the same activity region. This combination
will help in robust detection of objects in surveillance
applications.””’

For real-time surveillance applications, the processing
needs to be performed on a processor that can handle two
streams of images with low latency. Microprocessor-based
platforms are expected to have high latency because of
memory-bound and sequential operations.®'’ Therefore,
using field-programmable gate array (FPGA) for processing
is a suitable choice for the handling of parallel processes
because of the inherited parallelism.
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Fig. 1 Visual and thermal images.

Integrating two different image sensors poses challenges
of design complexity, synchronization, a large amount of
data, and high-power consumption. Traditional approaches
to handling such challenges are based on the two implemen-
tation strategies listed here.

* Acquire images and transmit compressed images in
order to perform computation and analytics on a client
device with sufficient resources [Fig. 2(a)]."!

* Acquire images, process them and transmit feature
information to a client device where analysis is per-
formed [Fig. 2(b)].'>"

In the first approach, the computational load on the node
is minimal but the communication requirement is enormous,
which increases communication latency. In the second
approach, the communication requirement is reduced as final
features are transmitted. However, the computational load
is high, which results in increased processing latency for
microprocessor-based systems and increased implementa-
tion complexity for FPGA-based systems.®

In comparison to the aforementioned two approaches,
our approach, shown in Fig. 3, considers computation load
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Fig. 2 Traditional implementation strategies for smart cameras.
(a) Most processing on the client device. (b) Most processing on
the smart camera node.
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Fig. 3 Vision processing based on intelligence partitioning.

partitioning between two points, a camera node, and a client
device. The preprocessing pixel level tasks, such as background
modeling, subtraction, segmentation, morphological operation,
and region of interest extraction are performed on the camera
node, and high-level tasks such as feature extraction and clas-
sification on the client device.

1.1 Problem Description

Current research focusing on embedded smart cameras is
mostly related to single imager where common challenges
include computational complexity, high processing, and
communication energy consumption in order to extend the
lifetime.®!° Employing embedded smart cameras for real-
time applications puts further constraints on latency and
robust surveillance.

This in turn motivates the use of quick processing engines
such as FPGA, which can perform computation in far less time
as compared to microprocessor-based processing platforms.®
However, implementation complexity on the register transfer
level (RTL) for FPGA is greater. The robust surveillance
requires multimodel sensor integration, which increases the
challenges associated with processing, communication, latency,
and power. In order to address these challenges, this paper
explores two preprocessing architectures for FPGA-based
smart cameras that have reduced implementation complexity,
as well as processing and communication latencies.

In our proposed approach, a region of interest (ROI) is
extracted using simple imaging tasks. The ROI is then com-
pressed and transmitted more frequently, whereas the full-size
image is transmitted less frequently in order to intelligently
monitor the area. This approach helps to simplify design com-
plexity, reduce processing and communication requirements
for multiple imagers’ systems on an FPGA-based platform.
Depending on the classification algorithms on the client
side, an architecture with color regions of interest or binary
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region of interest data can be transmitted from the camera
node. The performance, power consumption, and output data
shows that the solution is comparable to a single imager smart
camera node, with the added advantage of robustness in detec-
tion under different environmental conditions.

The remainder of this paper is organized as follows.
Section 2 presents related work, Sec. 3 discusses the exper-
imental setup and test cases. Section 4 presents the process-
ing flow and Sec. 5 discusses the architecture exploration
and results. Finally, Sec. 6 summarizes the conclusions.

2 Related Work

The increasing interest in embedded smart camera research has
broadened the scope by attracting different types of applica-
tions, mainly because of features such as on-board computa-
tions, wireless communication, and easy integration of
peripherals. The increasing demand for on-board computations
has motivated the usage of FPGA-based architectures for cer-
tain applications which require high performance, low energy,
and reconfigurable solutions.*'*!* In this paragraph, we present
a sample of work from published literature in the area of
embedded smart camera and multispectral image processing.

Kandhalu et al.'> presented a platform called DSPcam,
which performs local processing in order to detect an
event and annotate the video stream for the operator at the
observation station in the network. Gasparini et al.'* used
a bilevel CMOS vision sensor of 128 X 64 resolution to
capture images and then perform binary processing on a
FLASH-based FPGA. The authors proposed design princi-
ples for VSN in the context of a long lifetime. Bourrasset
et al.' proposed an FPGA-based smart camera mote which
can be reconfigured by using internet protocol. The authors
have reported a tool chain which can accelerate the develop-
ment process on FPGA by avoiding the low-level program-
ming. Rinner and Winkler'® argued that privacy aware
approaches require processing of tasks near the image sensor
in order to transmit processed information. The authors dem-
onstrated a proof-of-concept system showing cartoon images
by embedding imaging tasks close the image sensor, thereby
reducing the identity information.

The aforementioned embedded smart camera considered
a single imaging sensor, which has a different set of chal-
lenges as compared with multispectral imagers, which are
discussed in the following paragraphs.

Magno et al.® introduced a multimodal wireless smart
camera equipped with a pyroelectric infrared sensor and a
solar energy harvester. The authors have shown that the
energy harvester together with a heterogeneous combination
of sensors provide better battery life for the camera node.
Goel et al.* proposed a multispectral camera using time-mul-
tiplexed illumination, which highlights salient features of a
scene by using multiple wavelengths. The proposed camera
system uses a CMOS sensor with a sensitivity from 350 to
1080 nm integrating narrow-band light-emitting diodes
(LEDs) to create 17 different spectral bands, ranging from
450 to 990 nm. However, this camera system requires objects
to be in close proximity to the camera in order to have good
exposure for LED illumination. Mouts et al.'® evaluated
moving object detection techniques by using a pixel-based
statistical approach. The authors evaluated the effect on
the detection accuracy when thermal and visual image fusion
is performed before and after subtraction. Ibrahim and Wirth’
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developed a visible and IR data fusion technique using the
contoured transform. The proposed solution is based on a
region-based fusion technique reported to produce output
images for better human and machine interpretation. The
authors’ focus was to preserve the input image’s spectral
components, such as chromaticity of visual images, as com-
pared to pixel-based fusion approaches.

The literature mentioned above shows that current
approaches for combining thermal and visual information
are based on fusion techniques, which can be categorized
into three types® based on the processing location in the im-
aging flow, which consists of functions ranging from image
acquisition to decision level. The three fusion approaches
include:

¢ Pixel-based fusion
¢ Feature-based fusion
¢ Decision-level fusion

However, these techniques focus on efficient fusion of
information from two image streams without considering the
resource limitation of embedded smart cameras. Migrating
traditional algorithms to an embedded platform results in a new
set of challenges because of resource constraints, development
time, and availability of support and skills.

In comparison to the aforementioned three approaches
focusing on processing algorithms, our approach considers
implementation on an FPGA-based platform. In this
approach operations are performed on thermal images
because of the lower spatial resolution and the higher con-
trast as compared to visual images. This enables us to trans-
mit compressed ROI data more frequently and full-size
images occasionally in order to monitor the area intelligently.
In this way, design complexity, processing and communica-
tion requirements for embedded smart cameras, integrating
multiple image sensors are reduced.

3 Experimental System and Test Case

Before describing our proposed approach, the experimental
setup involving two image sensors, their respective param-
eters, such as fps, focal length, and spatial resolutions, are
described. The section also gives a brief overview of the
selected FPGA device, calibration method and test case
used for this work.

3.1 Hardware Description and Method for Calculating
Latency

For thermal imaging, a tamarisk 320 camera,'” based on
uncooled VOx micro-bolometer sensor technology, with
a spectral band of 8 to 14 ym has been used. This camera
has a 19 mm focal length lens, a spatial resolution of 320 X
240 and a pixel pitch of 17 ym. The clock frequency with
parallel video mode is 10 MHz.!” For visual imaging,
an IDS CMOS UI camera'® has been used. This camera
has a 12-mm focal length lens, a spatial resolution of
1280 x 1024 and a pixel pitch of 5.3 um. For resource esti-
mation, an Artix 7 series FPGA device 7a200tfbg484'° has
been used. The device has 134600 logics and 730 (18 Kb)
or 365 (36 Kb) BRAMs.

It is important to mention that the processing latency for
the two architectures is calculated by using
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T = (Row x (Col+Ls) +Lt)/f (sec), (1)

where Lt is the latency of each task, f is frequency of the
thermal camera, Row represents the rows, and Col represents
the columns of thermal camera, and Ls represents the low
line sync.

3.2 Calibration for Image Rectification

The proposed system uses two imagers with different char-
acteristics, such as different kinds of sensors, resolutions,
and optics. These characteristics, in addition to the baseline,
result in disparity between the two images. Therefore, we
have used a one-time calibration method which will trans-
form the images to emulate a common image plane so that
objects appear of the same size and on the same plane in
images. This calibration method involves small incandescent
bulbs used as reference points, simple scaling tasks, and zero
padding. A scaling factor for both horizontal and vertical
direction is required in order to make the object sizes of
the thermal image similar to the object sizes of visual
image. For scaling in the horizontal direction, Eq. (2) is used,
and for scaling in the vertical direction, Eq. (3) is used. Rv1,
Rv2, and Rv3 are reference points on visual images as shown
in Fig. 4(a), and Rt1, Rt2, and Rt3 are three reference points

point’s horizontal coordinate value is represented by x
and vertical coordinate value by y. These reference points
will facilitate the calculation of the upscaling factor for
the thermal camera.

R’UZ(Xz) - R’I)l(ﬂ)

Horizontal scaling factor (Hs) = m ()
Rv35 — Rvly,

Vertical scaling factor (Vs) = M. 3)
Rt3(y3) — Rll(yl)

The new rows and columns are calculated according to

Rows_new = Hs X Rows_original. (@)

Columns_new = Vs x Columns_original. )

After scaling up the thermal image, it is zero padded in order
to match the size of the visual image. In connection to this,
the number of blank rows and columns are calculated by
using Egs. (5) and (6), respectively. The upscaled image,
including reference points as well as horizontal and vertical
blanking, is shown in Fig. 4(c).

on the thermal images shown in Fig. 4(b). Each reference Blank columns = Rv2(,3) — RI25(x2). ©)
Rvl(xl,yl) Rv2(x2,y2)
Rv3(x3,y3)
Blank rows
Rtls(x1,yl) Rt2s(x2,y2)
Rtl(x1,y1) RE2(x2,y2)
o o @
Blank
(&)
RB(x3,y3) columns
R RN Rt3s(x3,y3)

Fig. 4 Calibration of thermal and visual images. (a) Reference points on the visual image. (b) Reference
points on the thermal image. (c) Scaled version of the thermal image.
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Fig. 5 lllustration of the train stopping with respect to object.

Blank rows = Rv2(y5) — Ri25(y7). @)

3.3 Test Case: Rail Track Monitoring

The test case for this work is surveillance of railway tracks’
surroundings in areas where increased safety for people pass-
ing by and who work or live in the vicinity is needed. In
Sweden alone, ~100 people a year lose their lives on rail
tracks.”’ Because of the high speed of trains today, pedes-
trians and drivers have little time to react to avoid collision.
To avoid collision, it is vital that the train operator receives
information before approaching safety-critical areas so that
she/he can make the best possible decision. The stopping dis-
tance of the train depends on different variables such as num-
ber of braking elements, reaction time, response time, mass
distribution, geography of the track, and dynamic friction.?!
These variables led us to the simplified assumption shown in
Fig. 5, where stopping distance depends on the sighting dis-
tance, i.e., when the train operator sees an object, the reaction
distance, and braking distance. Our goal is to propose an im-
aging-based solution that detects objects in different weather
conditions and alerts the train operator in real-time so that the
train operator has robust information of the surroundings.
This in turn will help to increase the sighting distance and
reduce the reaction time. In the proposed approach, the smart
cameras at fixed locations will transmit processed data to the
train operator in real-time. This helps us to simplify the sys-
tem parameters, such as the calibration of the two image
sensors and the limiting distance at which objects can be
correctly classified.

4 Preprocessing Flow for IR-Visual Smart Cameras

Based on the approach shown in Fig. 3, two preprocessing
flows, shown in Figs. 6 and 7, are analyzed for hardware
implementation. The preprocessing flow for architecture 1,
shown in Fig. 6, has two types of output data transmission:
compressed color ROI of activity region and complete color
compressed image. The preprocessing flow for architecture
2, shown in Fig. 7, has two types of output data: compressed
binary ROI of activity region and complete color compressed
image. The selection of the processing flows depends on the
classification algorithms used on the client device. One
architecture can be employed for systems which classify
objects based on color data and other can be employed
for systems which classify objects based on binary data.
In the following, a detailed discussion of each task is
presented.

4.1 Background Modeling and Subtraction

In this task, two existing low-complexity background
modeling and subtraction techniques, background generation
with a temporal low-pass for infinite impulse response (IIR)
filtering'”> and progressive background generation,”> have
been evaluated with respect to thermal imagery. Based on
the analysis, the background modeling techniques have
been modified to develop a hybrid technique which was
tested on different data sets. After in-depth analysis, the pro-
posed technique is modeled at RTL level and implemented
on FPGA.? The hybrid background is represented by

Mbg if In—Bg(t—1)|<e
%mz{ g if [In—Be(r—1)| <.

Lbg else ®

Mbg = min(In(#),Bg(r — 1)) or
Lpg=aln+ (1-a)Bg(r—1)

avg(In(r), Bg(r = 1))

where In is the current image, Bg is the generated back-
ground, Mbg represents background pixels when the differ-
ence between the current and the previous background is
smaller than a constant e. In this study, the value of ¢ is
selected as 25 based on repetitive experiments on the thermal
image data set.”® The static objects with a temperature similar
to that of humans are considered as a part of the background
because of the small intensity difference between successive
images. Therefore, to generate Mbg, we use a nonlinear min
filter. Other alternatives for calculating the Mbg value is
averaging of the two pixel values, i.e., the value of the current
or previous frame pixel value. Lbg is generated by using low-
pass first-order recursive filter when the difference between
the current and the previous background is greater than a
constant €. In this part, the background image is updated
by integrating new incoming pixel data into the current back-
ground to adapt the temperature variation and motion
changes caused by high frequency background objects
like trees and shrubs etc. In this case, a is the adaptation coef-
ficient and it is selected as 0.15 in order to ensure that arti-
ficial tails behind moving objects are not created.'” The value
of a is selected based on repetitive experiments on the ther-
mal image data set.”

4.2 Segmentation

The background subtraction tasks efficiently remove the
background and uneven variation in thermal images.
Therefore, a global thresholding with a manually selected
threshold value of 28 has been used because of the uniform-
ity in the subtracted thermal image. The manual threshold is
selected after thorough experiments. This helped to reduce
the complexity in hardware implementation.

Thermal Background . _
» ! > N
images Subtraction Segmentation Morphology —  Upscaing
A 4
e » ROI Extraction »> JPEG I »
Images

Fig. 6 Preprocessing flow for architecture 1.
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Fig. 7 Preprocessing flow for architecture 2.

4.3 Morphology

In morphology, unwanted pixel noise is removed by using
morphological operation of erosion and dilation. A window
size of 3 X 3 is selected in order to perform the operation.

4.4 Bilevel Region of Interest Coding

In bilevel ROI coding, image data is reduced by using com-
pact ROI extraction techniques, ITU-T G4 coding scheme
and zero-to-end symbol run length coding.®

4.4.1 Compact region of interest extraction

In ROI extraction, binary regions of objects are extracted by
removing the rows without objects and retaining the columns
as shown in Fig. 8. The columns are passed through because
the data after ROI is compressed by using the ITU-T G4, in
which the position of each changing picture element is
calculated, rather than alternating black and white runs.
The rows containing no object pixels are represented by zero
and the row containing objects are represented by one. These
sequences of 1s and Os are encoded by using a version of a
zero-to-end run length coding technique.® The run length
codes representing the presence of objects in the rows are
transmitted along with the compressed Huffman codes of
the ROI image to the client device.

4.4.2 |TU-G4 compression

For bilevel image coding, the ITU-T G4 compression
scheme has been selected based on the reported study.’*
The ITU-T G4 uses a two-dimensional line-by-line coding
method in which vertical features in the source image are
used to achieve a better compression ratio.

4.4.3 Data formatting

The output data format for bilevel ROI coding is shown in
Table 1 where “Huffman codes” are appended with “row
runs” of variable length followed by two bytes of informa-
tion showing the data length of row runs. This data format
will enable the reconstruction of the image with objects
placed in the original location.

Fig. 8 Bilevel ROI extraction.
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4.5 Upscaling and Zero Padding

There are several algorithms available for upscaling images
such as the nearest neighbor, bilinear, bicubic, quadratic
cubic, winscale, Lagrange, and Gaussian scaling algorithms.
Due to the unique characteristics and wide applications of
image scaling, a separate study of their evaluation methods
is essential. Some of these techniques, such as the Gaussian
method, offers good quality but have higher computational
complexity.”® In our approach, a bilevel segmented image
requires upscaling. Therefore, a low-complexity nearest
neighbor technique has been selected. This method has a
good high frequency response and reduces the blurring
effect.'® Following upscaling, zero padding is applied in
real-time on pixels retrieved from memory. This task requires
storage of a binary thermal image in internal memory in
order to synchronize the timings of thermal and visual
images.

4.5.1 Memory requirement

The proposed architecture 1 using an upscaling algorithm,
requires a memory of 75 KB in order to store a segmented
thermal image with a bit-width of 1. The memory is essential
in this case as the upscaling is done in both the vertical and
horizontal axis by a factor of 2 X 2. Access to the pixel of the
original image is vital to repeat the row once more; at each
clock cycle one new pixel is read from the thermal camera.
The segmented image data is written with the thermal camera
pixel clock, whereas the stored data is read by a visual cam-
era pixel clock. Using a visual clock for the reading process
from the block RAM (BRAM) helps the synchronization of
timing issues between the upscaled thermal pixels and the
incoming visual pixels. In order to prevent overwriting the
memory contents that have not been read yet, the writing
counter stops when the memory is full and starts again
when the reading counter reaches the last entry of the
memory. In such cases, the data of this frame is not written,
and the writing counter starts with the next frame synchro-
nization signal.

4.6 Color Region of Interest Coding

Color ROI coding consists of three parts, (1) extraction of
color ROI, (2) JPEG coding, and (3) rows and columns
runs calculation

Table 1 Bilevel ROI data format.

Huffman codes Rows runs Row runs bytes count
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4.6.1 Compact region of interest extraction

In this task, the thermal image is preprocessed in order to
segment the foreground from the background as shown in
Fig. 9(c). In addition, the thermal image is upscaled and zero
padded in order to match the visual image. Following this,
color ROI is extracted by performing a logical “AND”
between the pixels of the processed thermal images and
the pixels of the visual raw images. In this way, the unwanted
details are removed as shown in Fig. 9(d). Next, the rows and
columns containing no objects are discarded. The resultant
compact ROI extracted image is shown in Fig. 9(e).

For pixel-based processing, this task is completed in two
stages. In the first stage, rows with objects are retained, while
rows with no objects are discarded, as shown in Fig. 10(b). In

the second stage, columns are traversed for the presence of
objects, and columns with objects are retained whereas
columns with no objects are discarded, as discussed in
Fig. 10(c).

The rows and columns with objects are represented by 1s,
and row and columns with no objects are represented by Os.
In the first stage, the sequence of 1s and Os for rows are
coded and in the second stage, 1s and Os for columns are
coded by using zero-to-end symbol run length coding. This
process is shown in Fig. 9(d).

4.6.2 Memory requirement

The color ROI extraction requires storage of the image part
in the memory for the second stage. In the first stage, rows

1,30216 66 18109 42 107 043
10 5 1169 9 95 4

Fig. 9 lllustration of color ROI extraction. (a) Thermal image. (b) Visual image. (c) Preprocessed thermal
image. (d) Masked image of ¢ and b. (e) Compact ROI extraction.
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Fig. 10 Compact ROI extraction illustration. (a) Full-size image.
(b) ROI with columns retained. (c) Compact ROI after removing
rows and columns.

that do not contain objects are removed, and then extracted
ROl is stored in the internal memory. The resultant image is
shown in Fig. 10(b). In the second stage, the columns con-
taining no objects are discarded. The resultant image is
shown in Fig. 10(c). The memory requirement is estimated
by using Eq. (9). Using the mentioned experimental setup
configuration, columns are 1280, the average expected num-
ber of rows are 225, and bits per pixel are 24. Therefore, the
memory requirement is 6.6 MB

mem = columns X expected_rows X bitsperpixels. )

4.6.3 JPEG coding

For color image coding, the JPEG compression scheme has
been selected because it is commonly used, and it offers
the option of selecting a suitable image quality and compres-
sion ratio. In connection, we evaluated the compression
scheme in MATLAB with respect to compression ratio and
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(b)

Fig. 11 Selection of JPEG compression quality factor. (a) Compression
with quality factor of 1. (b) Compression with quality factor of 10.
(c) Compression with quality factor of 100.
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Fig. 12 (a) PSNR and (b) SSIM values with different compression
quality factors.

image quality by selecting different (quantization matrix)
quality factors, ranging from 0 to 100, where 0 means lower
quality and higher compression, and 100 means higher quality
and lower compression. The visual inspection (Fig. 11), peak
signal-to-noise ratio (PSNR), and structure similarity index
(SSIM) values (Fig. 12) show that a quality factor of 10 is
suitable and does not result in major loss of image details.

4.6.4 Data Formatting

The output data format for color ROI coding is shown in
Table 2. The JPEG coding is appended with “row runs”
and “column runs” of variable length followed by 2 bytes
for each row and column length information.

4.7 Resource utilization and latency of tasks

The resource utilization and latency of each task in the pre-
processing flow is shown in Table 3. The resource estimation
is considered with respect to Artix 7a200ttbgd84 FPGA.
This device can implement BRAM in two formats, either
as 18 KB, which are 740 in number, or 36 KB, which are
365 in number. In Table 3, 18 KB BRAMs is represented
by the * symbol, whereas 36 KB BRAMs is represented by
the * symbol. In relation to the final implementation, logic
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Table 2 Color ROI data format.

ROI JPEG Row Column
data runs runs

Column runs
bytes count

Row runs
bytes count

resources of any specific strategy can exceed the combina-
tion of the individual functions because the integration and
synchronization requires extra logics.

5 Evaluated Architectures and Discussion

Two architectures have been evaluated for embedded smart
cameras on FPGA, taking the implementation complexity on
hardware, data reduction, and resource utilization into con-
sideration. In both architectures, background modeling and
subtraction is an integral and important preprocessing step;
therefore, the background modeling and subtraction algo-
rithm is discussed before describing the two architectures.

5.1 Background Modeling and Subtraction

The implementation complexity on hardware platforms
such as FPGA requires development of a low-complexity
background subtraction technique which can effectively

Table 3 Resource utilization and latency of individual tasks (Artix
7a200tfbg484).

Logics % BRAMs Latency
Vision tasks used used 18 K/36 K* DSP (clk cycles)
Image capture 126 0.09 NA NA 4
Background storage 149 0.11 24 2/740 76802
model and
subtraction
Segmentation 6 0.00 NA 1
Morphology 134 0.10 4* NA 650
Upscaling and 235 0.17 1+ 2 NA 2560
zero padding
Bilevel ROI coding NA NA NA NA NA
Compact ROI 276 0.21 NA 641
extraction
ITU-T G4 2946 2.19 3* NA 327
Data formatting 5 0.00 NA 1
Color ROI coding NA NA NA NA NA
Compact ROI 414 0.31 188" NA 1
extraction
JPEG coding % 1594 1.18 5* 11/275 2064
Data formatting 27 0.02 NA 1
Rs232 167 0.12 1* NA 4

communication
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Fig. 13 ROC curve for LPIIR, hybrid, and progressive background
subtraction algorithms. (a) Precision versus recall. (b) TPR versus
FPR.

remove the background noise while maintaining a reduced
computational and memory requirement in order to fit on
available FPGA resources. We have performed an in-depth
analysis on different sets of thermal images, characterizing
signal-to-noise ratio challenges, e.g., motion of high fre-
quency background objects, temperature variation and
camera jitter etc.” The investigated result is complemented
by performance analysis by using ROC curves.

5.1.1 Performance analysis using receiver operating
curve curves

The performance of the three techniques including LP IIR,"?
hybrid,” and progressive generation®® techniques are evalu-
ated by using receiver operating curve (ROC) analysis. Each
unique point on the ROC curve represents a threshold value
for the image. The experiments were performed on a host
computer for image data sets.”> ROC curves for the three
background subtraction techniques are shown in Fig. 13.
It is evident that the hybrid technique has high precision
and high recall as compared with the other two methods, as
shown in Fig. 13(a). The ROC curves with true positive rate
(TPR) versus false positive rate (FPR), shown in Fig. 13(b),
also depict that TPR is high and FPR is low for our proposed
algorithm as compared to the other two published systems.

5.1.2 Background subtraction architecture

The computational architecture of the proposed background
modeling and subtraction is shown in Fig. 14. The first
incoming input image is stored in the BRAMSs without
any processing. Following the second frame, the current
frame and the frame previously stored in BRAMs is used
to generate a background model (BG model) by using the
operations discussed in Sec. 4.1. The multiplexer will
allow the first frame in the initial setup configuration and
then always store the new modeled backgrounds in the
BRAMs. For the subtraction operation, the current frame
is subtracted from the generated background image on
pixel level while simultaneously updating the background
model in the BRAMs. In the following, the two architectures
are presented.

5.2 Architecture 1: Medium Complexity and
Relatively High Memory Requirement

In this architecture, as shown in Fig. 15, preprocessing im-
aging tasks are performed on the thermal stream of images
because of the lower spatial resolution and better contrast.
This in turn helps to reduce the processing and communica-
tion requirement. After detecting the area of interest in the
thermal stream of images, a region of interest in the visual
images are extracted by using the masking (AND) operation
with visual images. The visual ROI image is coded by trans-
mitting color ROI coded data as discussed in Sec. 4.6. The
activity information is transmitted frequently by using color
ROI coding because of the reduced data for communication
purposes. In addition to the ROI image, depending on
the requirement (periodicity, time, or event triggering), a

Updated BG
Select
BRAMs BG
. model
Input images Current image

Fig. 14 Architecture for background modeling and subtraction.
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Fig. 15 Preprocessing architecture 1: medium complexity and relatively high memory requirement.

complete image will be transmitted for situational awareness
and updates of changes in infrastructure.

5.2.1 Memory requirement

Architecture 1 requires memory buffers in three stages of the
imaging pipeline flow. In the first stage, memory (MEM_01)
is required for the storage of the thermal image, in the second
stage, memory (MEM_02) is required for the synchroniza-
tion of the thermal and visual images, and in the third stage,
memory (MEM_03) is required for the extraction of the ROI
in the two stages, as discussed in Sec. 4.6.1. The bit-widths
of MEM_01, MEM_02, and MEM_03 are 8, 1, and 24,
respectively.

5.3 Architecture 2: Low Complexity and Low Memory
Requirement

In architecture 2, as shown in Fig. 16, the bilevel ROI coded
data is transmitted frequently whereas color images are trans-
mitted occasionally depending on the requirements of the cli-
ent device. In this architecture there are lightweight tasks in
the preprocessing flow and the memory requirement is lower,
as compared to architecture 2. The difference between the
two, is that instead of color ROI, binarized ROI will be trans-
mitted from the camera node. This in turn requires a binary
classifier on the client device.

5.4 Resource Utilization, Latency, Power
Consumption and OQutput Data of the Two
Architectures

The resource utilization in terms of logics, memory and
DSP utilization, processing latency, and output produced

data of the two architectures are shown in Table 4. The
logic utilizations of the two architectures show that a smaller
FPGA device can be utilized, provided the device has suffi-
cient internal memory (BRAMSs) as required by the two
architectures. This in turn will help to circumvent the quies-
cent power consumption associated with the unused FPGA
fabric.

Depending on the requirements of the client side, archi-
tecture 1 can be used if the classification is performed on
color images and architecture 2 can be used if the classifi-
cation is performed on binary images on the client device.
Architecture 1 requires approximately 6.6 times greater
memory and produces ~32 times more output data, at a
cost of ~2 times more logics, as compared with architecture
2. The large amount of output data will contribute to greater
communication latency and costs.”* The output data could
vary depending on the movement and distance of the object,
therefore, standard deviation from average output data for
single objects is calculated. The percentage variation in stan-
dard deviation from average output data is reported to be less
than 24% for both architectures.

It is worth mentioning that the preprocessing architectures
could be applied to multiple object scenarios. However, this
would require that the classification algorithm on the client
device can handle multiple objects in a single image. The
performance of the system is 53 frames/s, which is depen-
dent on the clock frequency of the image sensors instead of
separate system clock frequency. This helps to avoid unnec-
essary synchronization and reduce the power consumption as
switching activity occurs according to the speed of the
incoming pixels clock. The power consumption is reported
to be 163 and 141 mW for architecture 1 and architecture 2,
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Fig. 16 Preprocessing architecture 2: low complexity and relatively small memory requirement.
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Table 4 Resource utilization, power consumption, performance, and output data.

Output data

Memory Power Processing Frequently (Bytes) Occasionally (KB)
18 Kbits consumption latency (ms),
Logics DSP 36 Kbits* (mW) Average Standard deviation Average Standard deviation
Architecture 1 2852 13 15, 212+ 163 18.7, 53 FPS  4468.9 1101.3 38.5 1.2
Architecture 2 5638 13 14°, 26* 141 18.8, 53 FPS 142.5 33.6 38.5 1.2

respectively. This concludes that suitable design and
architecture methods can enable existing FPGA devices to
handle the processing of two image streams for real-time
applications.

5.5 Comparison with Existing Systems

Individual algorithm parameters such as efficiency and com-
plexity have been compared before considering it for hard-
ware implementation. The resultant images after background
modeling subtraction and JPEG coding algorithms have been
compared with ground truth before selecting the algorithm
for implementation. The comparison result is shown in
Secs. 4.6.3 and 5.1.1. As discussed in related work, the
current research trend of multispectral camera systems is
processing algorithms, rather than hardware implementation.
Therefore, direct comparison with other systems is challeng-
ing because of the unavailability of published results from
the hardware implementation perspective. However, the
future potential of thermal cameras and quick processing
engines, e.g., FPGA in safety applications, such as the auto-
motive industry and industrial automation,”’*® will attract the
research community to this area. Nonetheless, this work will
serve as a reference system for future hardware implemented
multispectral imaging systems.

6 Conclusion

This paper explored suitable preprocessing architectures for
FPGA-based embedded smart cameras integrating thermal
and visual image sensors. The need for such a system
arose from outdoor surveillance applications with real-time
and robust surveillance requirements. This work integrates
thermal and visual image sensors with FPGA so that the sol-
ution has lower processing time and is able to work in differ-
ent weather and environmental conditions. In relation to this,
two preprocessing architectures are explored, which can
effectively segment the objects from the background and
reduce the amount of transmission data with the help ROI
extraction and image coding schemes. Both architectures
transmit data in two modes (1) frequent transmission and
(2) occasional transmission in order to transmit activity infor-
mation and changes in the environment. Depending on the
classification algorithms on the client device, one architec-
ture transmits color ROI data frequently and other architec-
ture transmits bilevel ROI data frequently. The architecture
with binary ROI consumes 6.6 times less memory, resulting
in 32 times less output data. A rigorous experimental data on
pedestrian detection application shows that the proposed
architectures can offer a frame rate of 53 frames per second
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which makes the underlying system suitable for real-time
applications.
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