
Autonomous, Lightweight Calibration of Visual
Sensor Networks with Dense Coverage

Jennifer Simonjan, Bernhard Rinner
Alpen-Adria-Universität Klagenfurt, Austria

Email: {firstname.lastname@aau.at}
Klagenfurt, Austria

Abstract—We present an algorithm for autonomous network
calibration of visual sensor networks, which become more and
more pervasive since they can be found in various everyday life
environments. The proposed algorithm works in a fully decentral-
ized way and minimizes usage of cost-intensive vision algorithms.
To achieve network calibration, our approach relies on jointly
detected objects and geometric relations between camera nodes.
Distances and angles are the only information required to be
exchanged between nodes. The process works iteratively until
cameras have determined the relative position and orientation of
their neighbors. Preliminary results are demonstrated using our
visual sensor network simulator.

I. INTRODUCTION

Visual sensor networks (VSNs) consist of spatially dis-
tributed smart camera devices, which are capable of capturing
and processing images of a scene. A network of multiple cam-
eras provides a variety of information from several viewpoints.
VSNs are becoming ubiquitous and pervasive since they can
be found in many applications including home automation,
ambient assisted living, surveillance and entertainment sys-
tems. The camera nodes themselves are getting smaller, more
powerful and cheaper nowadays, enabling a new generation of
large-scale and efficient applications. In the deployment phase
of a VSN, the network calibration is of important interest
in order to enable a quick and simple installation. Network
calibration is concerned with establishing relations between
neighboring nodes, in order to gather knowledge about the
network topology. This process should be done autonomously
to enable ad-hoc deployment in dynamic environments.

In our work we target autonomous network calibration of
highly scalable VSNs with dense coverage [1]. Our network
calibration technique enables cameras to learn the relative po-
sition and orientation of neighboring nodes, without the need
for a-priori knowledge or user-interaction. Thereby, we define
neighbors as nodes with overlapping fields of view (FOVs).
The approach works without complex vision algorithms and
keeps communication costs low in order to save resources.
Further, the algorithm is fully decentralized and based on
simple distance/angle estimations, achieving several advan-
tages over other approaches: First, there is no user-interaction
required. Second, networks become highly scalable and third,
the resource efficiency is increased significantly since the
algorithm operates solely in the local neighborhood avoiding
cost-intensive processing and communication in large-scale
networks.

Autonomously calibrating decentralized VSNs has recently
gained interest in the research community since calibrated
networks enable higher robustness and smarter applications.
Detmold et al. [2] presented an approach which is capable of
estimating the activity topology for a network of thousands
of cameras. Each camera learns which cameras are within
the neighborhood but no camera positions and orientations
are estimated. The approach is centralized which limits the
scalability and increases the required installation effort of the
network noticeably. Esterle et al. [3] proposed a decentralized
solution for learning vision graphs of VSNs. Deravajan et
al. [4] proposed a framework for intrinsic (focal length) and
extrinsic (3D location and orientation) calibration of cameras,
which is based on feature extraction and matching. Liu et al.
[5] estimate the transformation between two cameras using
noisy foreground blobs and relying on a joint optimization
framework with robust statistics. Borra and Fagani [6] calibrate
camera networks in a distributed fashion without the need
for complex vision algorithms. However, the cameras are
calibrated with respect to a global reference frame. Anjum and
Cavallaro [7] presented an algorithm for external calibration
of camera networks with non-overlapping FOVs by estimating
trajectories in unobserved regions.

The rest of the paper is organized as follows. In section
II, we present our approach for position and orientation
estimation of neighboring cameras. Section III shows and
discusses preliminary simulation results. We outline future
work in section IV and conclude in section V.

II. APPROACH

Overview

The goal of our network calibration approach is to estab-
lish a common coordinate system which contains positions
and orientations of all cameras within the network. For that
purpose, cameras operate on local coordinate systems while
estimating relative positions and orientations of neighbors. The
nodes solely rely on local interactions with their neighbors,
simple vision based detections and geometric relations. There
is no a-priori knowledge about node positions/orientations and
no global reference available.

Calibration algorithm

We divide the calibration process into two levels: object-
based estimation and network-wide calibration. Object-based



α1
d1

(xt/yt)

Fig. 1. Distance d1 and angle α1 of camera c1 to a detected object.

estimation is done whenever a camera detects an object in its
own FOV. Network-wide calibration includes communication
and is done to relate to neighboring nodes and to spread
calibration information. Throughout the whole process, each
camera operates on a local coordinate system with its own
position in the origin and an orientation of 0◦. Relative po-
sitions and orientations of neighboring cameras (those which
have overlapping FOVs) are determined, added to the local
coordinate system and spread through the network.

Assumptions: All cameras are placed at the same altitude
and position estimation is done in 2D (will be extended in
the simulator in future work). The camera network is fully
distributed and synchronized and the cameras have communi-
cation capabilities such as WiFi. We assume a single object
of known size (will be relaxed as a next step) moving through
the network and a simple vision based detection running on
each camera. Cameras are able to re-identify objects.

Object-based estimation: When an object is detected, cam-
eras estimate the distance d and the angle α, as shown in
Figure 1, to the object. Since each camera assumes itself at
the origin with orientation 0◦, α is positive if the object was
detected in the right part of the FOV and negative otherwise.

The size of the object is required to determine the distance
d. Currently, we assume that object sizes are known. However,
we will extend our approach by estimating the object size
based on statistical calculations. Knowing the size, a camera
can measure the vertical angle and therefore calculate the
distance d. The object position (xt/yt) is clearly defined
by radius d and angle α. When a camera has finished the
estimation, it broadcasts its distance d and horizontal angle α,
which will trigger the calibration process. The pseudo code of
the object-based estimation is shown in Algorithm 1 and runs
on each camera in the network.

Algorithm 1 Object-based estimation algorithm
if object is detected then

generate time stamp ti
generate object identifier oi
estimate distance di to object
estimate horizontal angle αi to object
broadcast message including ti, oi, di and αi

end if

Network-wide calibration: In the network-wide calibration
phase, nodes send and receive object information and use it
to estimate relative positions and orientations of neighbors. To

d1

α1

d2

c1

c2

(xt/yt)

Fig. 2. Circle of camera c1 to estimate the position of camera c2. Camera c2
lies somewhere on this circle.

ease the explanation, we assume two cameras c1 and c2 with
overlapping FOVs. Both cameras have seen the object at the
same time and completed the steps of Algorithm 1.

Determining positions: Camera c1 thus now receives the
distance d2 of camera c2 and starts with the position estima-
tion. Camera c1 estimates the position of camera c2 somewhere
on the circle with radius d2 and center (xt/yt) (defined by
d1 and α1). The estimation is done for every joint object
detection (i.e., multiple objects, or one object at different time
instances). Figure 2 shows the estimated circle of camera c1
for the common object detection to determine the position of
camera c2. Camera c2 lies somewhere on this circle.

Every time the cameras jointly detect an object, the calcula-
tions are repeated, resulting in further circles. The intersections
of all circles are calculated. The algorithm works iteratively
until there is just one intersection left, which intersects with
every single circle - this is the relative position of the neigh-
boring camera. Summarized, each camera ends up with one
circle per common object detection. After multiple detections,
the intersection of all circles leads to the position of the
neighboring camera. Each camera does these calculations for
all neighbors, resulting in a decentralized calibration approach.

Determining orientations: Cameras use received angles and
object positions to determine the orientation of their neighbors.
Again, lets assume cameras c1 and c2 have an overlapping
FOV and detected a common object. The object shown in
Figure 3 is in the left part of the FOV of camera c2 resulting
in a negative angle α2 (i.e., −20◦).

Camera c1 receives besides the distance d2 also the angle α2
of camera c2. If camera c1 has finished determining (x2/y2),
the calculation of the angle β, as shown in Figure 3, is simple.
Knowing the neighbor’s position (x2/y2) and the position of
the object (xt/yt), camera c1 calculates the angle between
those two points w.r.t. its local coordinate system and adds
the received angle α2 in order to determine β, which is the
difference in orientation. To enable large-scale calibration,
locally determined position/orientations are spread trough the
network. The pseudo code of the network-wide calibration
is shown in Algorithm 2 and runs, as Algorithm 1, on each
camera in the network.

The computational cost for the calibration is one message



(0/0)

(x2/y2)
c2

c1

α2

α1

0°

(xt/yt)

β

Fig. 3. Local coordinate system of camera c1 with known positions (x2/y2)
and (xt/yt). The angle β depicts the difference in orientation, in which we
are interested.

Algorithm 2 Network-wide calibration algorithm
On object description message is received

if if object oi has also been locally detected at ti then
if position of sender node is unknown then

estimate position of sender node
else

estimate orientation of sender node
end if
broadcast calibration information

end if

per object detection per neighbor, one broadcast message
per finished position/orientation estimation and geometrical
calculations including sine and cosine.

III. PRELIMINARY RESULTS

We developed a VSN simulator to enable easy and fast
development and testing of algorithms. First tests were done
using this simulator. Comparative evaluations of a real camera
network will follow. The simulator can simulate a network
of static cameras with arbitrary FOVs and certain internal
parameters such as resolution and sensor range. The basic
camera model was adopted from Dieber et al. [8]. However,
we additionally model the vertical angle of cameras and the
vertical size of objects. Further, the simulator allows to add
moving objects to the scenario. Those objects can either move
randomly on the ground plane or follow specific predefined
way-points. So far, objects are modeled as 1x1 boxes and the
detection location of an object is defined by the lower middle
point of the bounding box.

Simulation scenario: Due to page limits, we will only show
one of our tested scenarios. In this scenario we simulated three
cameras with overlapping FOVs and arbitrary orientations.
One object was moving in the area of interest following
specific way-points. The way-points were constructed from the
PETS 2009 dataset1 to ensure a real world movement pattern.

1http://www.cvg.reading.ac.uk/PETS2009/a.html

Simulation results: To enable a meaningful evaluation and
comparison, we plotted results from local camera calculations
as well as ground truth data from the simulator. Figure 4
(a) shows the input scenario depicting the FOVs of the three
cameras in different colors and their positions. Figure 4 (b)
shows the position estimations of camera c1 for this scenario.
Since those calculations take place locally on the camera,
the figure shows the local coordinate system of camera c1.
The small circle depicts the position of camera c1 itself. The
large circles depict the position estimations for neighboring
cameras c2 and c3, whereby the inner black circles belong
to camera c3 and the green ones to camera c2. Calculations
for multiple neighbors are done independently - however, we
plotted them into one figure. The crosses show all intersections
where at least two of the circles intersect with each other.
The red squares depict the intersections which intersect every
single circle (per neighbor). Thus, the squares determine the
estimated position of the neighbors.

(a) (b)

Fig. 4. (a) The ground truth data. (b) Local measurements of camera c1.
The small circle shows the position of camera c1. The large circles are
the calculations for neighboring cameras c2 and c3. The crosses on the
circles depict the intersections, whereby the red squares depict the determined
neighbors positions.

For evaluations, we calculate the distances between the
cameras. Figure 4 (a) shows that camera c1 is located at
(50/50) and camera c2 at (60/40). Calculating the distance
between those two points results in a distance of 14.14. In
Figure 4 (b) camera c1 is located at the origin and camera
c2 at (6.8/− 12.3). In that case the distance is given as√

6.82 +(−12.3)2 = 14.05. For scenarios without any error
injection, the resulting distances match (except to rounding
errors). Thus, we can show that our algorithm can reconstruct
the real topology using only local knowledge.

Additionally to distances, also the orientation is of interest.
After the position of a neighbor has been determined, the
orientation is estimated. Again, we compare local results with
the ground truth. Figure 5 (a) shows the absolute orientations
of all cameras. Figure 5 (b) shows the local orientation
estimations of camera c1. The difference in orientation for
the cameras c1 and c2 is 88◦−16◦ = 72◦ in Figure 5 (a) and
71◦−0◦ = 71◦ in Figure 5 (b). Thus, the geometry of sensor



(a) (b)

Fig. 5. (a) The ground truth data. (b) Local orientation measurements of
camera c1. The ground line depicts camera c1 with orientation 0◦. The other
lines show the relative orientations of the neighboring cameras.

directions matches except to small rounding errors.
Now, we are interested in the robustness of the approach. In

a real camera network, there will be various sources of errors,
which we will try to model within the simulator in order to
get an idea about robustness and real world behavior of the
system. The results of our first robustness measurements are
shown in Figure 6. Again, the camera network is depicted by
three FOVs in different colors. However, we now added also
colored crosses to the plot, which are the locally calculated
positions of all cameras (transformed into the same coordinate
system). Figure 6 (a) shows the scenario without any error. As
we can see, the locally estimated positions (crosses) match the
real positions and the average deviating distance is only 0.15m.
This deviation is due to the distance estimation in Algorithm 1,
which is an approximation, and due to rounding errors. Figure
6 (b) shows the results for an error of 0.1m in object size
estimation. The crosses do not fit the right positions anymore
and the deviating distance increased to 2m.

Discussion: The algorithm shows promising results while
being highly resource efficient. It operates solely within the
local neighborhood, affecting computational cost only if the
number of neighbors is increased but not with increasing
network size.

IV. FUTURE WORK

Currently we are in the process of developing a solution
that enables cameras to find neighbors in the network. This
solution will rely on computer vision and learning techniques.
Afterwards, we will develop a statistical based algorithm able
to estimate object sizes, similar to what has been done by
Liu et al. [5]. This will extend the object model to a realistic
one. The object detections and the statistical estimations will
enable cameras to differentiate between objects and thus allow
multiple objects in the area of interest. We will test the
approach by introducing various error sources, using different
network sizes and numbers of objects. Further, we will deploy
our algorithms to a camera network to test them under real
conditions.

(a) (b)

Fig. 6. Both figures show the FOVs of cameras c1, c2 and c3. We plotted the
locally estimated positions (crosses) of all cameras into the same figures. (a)
Scenario without errors in the object detection. (b) We introduced an error
in the distance estimation - which was a deviating object size estimation by
0.1m.

V. CONCLUSION

In this paper we presented an autonomous network calibra-
tion approach for distributed visual sensors networks. Cameras
learn positions and orientations of neighboring cameras in
a fully decentralized way. For that purpose they solely rely
on geometric relations and basic object detections without
the need for complex and cost-intense vision algorithms. We
believe that the importance of user friendly and large-scale
camera networks will increase in the near future since those
networks become more and more part of the human’s everyday
life.

ACKNOWLEDGEMENTS

This work is supported by the research initiative ‘Mobile Vision’
with funding from the Austrian Federal Ministry of Science, Research
and Economy and the Austrian Institute of Technology.

REFERENCES

[1] J. Simonjan, “Towards large-scale pervasive smart camera networks,”
in Proceedings of the IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), 2015,
pp. 253–255.

[2] H. Detmold et al., “Topology estimation for thousand-camera surveillance
networks,” in Proceedings of the 1st ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC), 2007, pp. 195–202.

[3] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner, “Socio-economic vision
graph generation and handover in distributed smart camera networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 10, no. 2, p. 20,
2014.

[4] D. Devarajan, Z. Cheng, and R. J. Radke, “Calibrating distributed camera
networks,” Proceedings of the IEEE, vol. 96, no. 10, pp. 1625–1639, 2008.

[5] J. Liu, R. T. Collins, and Y. Liu, “Robust autocalibration for a surveillance
camera network,” in Proceedings of the IEEE Workshop on Applications
of Computer Vision (WACV), 2013, pp. 433–440.

[6] D. Borra and F. Fagnani, “Asynchronous distributed calibration of camera
networks,” in Proceedings of the IEEE European Control Conference
(ECC), 2013, pp. 754–759.

[7] N. Anjum and A. Cavallaro, “Automated localization of a camera net-
work,” IEEE Intelligent Systems, vol. 27, no. 5, pp. 10–18, 2012.

[8] B. Dieber, C. Micheloni, and B. Rinner, “Resource-aware coverage and
task assignment in visual sensor networks,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 21, no. 10, pp. 1424–1437, 2011.


