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Abstract—Visual sensor networks (VSNs) represent distributed
embedded systems with tight constraints on sensing, processing,
memory, communications and power consumption. VSNs are
expected to scale up in the number of nodes, be required to
offer more complex functionality, a higher degree of flexibility
and increased autonomy. The engineering of such VSNs capable
of (self-)adapting on the application and platform levels poses a
formidable challenge.

In this paper, we introduce a novel design approach for visual
sensor nodes which is founded on computational self-awareness.
Computational self-awareness maintains knowledge about the
system’s state and environment with models and then uses this
knowledge to reason about and adapt behaviours. We discuss the
concept of computational self-awareness and present our novel
design approach that is centred on a reference architecture for
individual VSN nodes, but can be naturally extended to networks.
We present the VSN node implementation with its platform
architecture and resource adaptivity and report on preliminary
implementation results of a Zynq-based VSN node prototype.

Keywords: Reconfigurable platforms; visual sensor nodes;
self-awareness; distributed embedded systems; performance-
resource trade-off

I. INTRODUCTION

Visual sensor networks (VSNs) consist of smart camera
nodes which integrate the image sensor, the processing system,
and the wireless transceiver as an embedded device. Smart
cameras [1], [2] are able to analyse image data locally and
extract relevant information, to collaborate with other cameras
on application-specific tasks, and to provide the user with
information-rich descriptions of captured events [3]. These
networks of spatially distributed smart camera devices are
becoming increasingly important in areas such as surveil-
lance and security, entertainment, assisted living and home
automation. Current trends show that compared to today’s
installations future VSNs will scale up in the number of
nodes and be required to offer more complex functionalities, a
much higher degree of flexibility, and an increased autonomy.
Functionality is not only getting more complex due to ever
more advanced algorithms but also due to an increasing
amount of captured data that needs to be processed. Flexibility
is needed not only because the applications change during the

VSNs’ operation, but also because the network topology and
the collective resources of the distributed system can vary
strongly during runtime. Increased autonomy allows VSNs
to take configuration decisions without external control, e.g.,
adapting the configuration upon changes in the network or
input data, which will facilitate deployment, operation and
maintenance phases for large networks.

VSNs are implemented on distributed embedded computing
platforms [4], [5]. In the last years, reconfigurable-system-
on-chip platforms have emerged that provide designers with
a cost-effective way to implement their applications on em-
bedded multi-cores using standard software ecosystems and,
additionally, to integrate customised functions as reconfig-
urable hardware modules for increased performance or energy-
efficiency. The ability to explore the resulting trade-offs in
performance, energy and hardware resource usage at runtime
is key to meeting the demands of future VSNs.

In this paper we introduce computational self-awareness
[6] as a design approach for VSNs that is able to deal
with these trade-offs simultaneously at node and network
levels. Self-awareness is a well-studied concept in the fields
of psychology and cognitive science (e.g., [7], [8]), but these
concepts have only recently been transferred to the computing
domain [6], [9]. The key novelty of this design approach lies
(i) in the integration of (self-)adaptivity and reconfigurability
at the application and platform level and (ii) in the support of
adapting the complete hardware layout comprising the number
and size of hardware cores and the interconnect between them
in response to VSN application changes.

The remainder of this paper is organised as follows. Sec-
tion II discusses related work on self-aware computing systems
and camera nodes on reconfigurable platforms. In Section III,
we introduce the design approach based on computational self-
awareness and the reference architecture for a VSN node.
Section IV presents our hardware platform with its levels of
adaptivity and reports on preliminary implementation results.
Section V concludes the paper with a summary and outlook.
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II. RELATED WORK

A. Self-aware computing systems

Over the last decade researchers have been proposing and
investigating the construction of computing systems with so-
called self-* properties. The self in self-* refers to the capabil-
ity of a system to modify its own behaviour or structure with-
out any external control in reaction to or even in anticipation
of system dynamics [10]. System dynamics can be caused by
changes in the system itself or by events external to the system.
There are many instantiations of self-* such as self-adaptive,
self-optimising, self-coordinating and self-healing, and the
appeal of self-* properties has fuelled research fields such
as self-organising systems [10], autonomic computing [11],
[12], and organic computing [13]. More recently and in a
sense on top of the evolution of self-* computing systems,
we find systems attributed with the characteristics of being
self-aware [14].

Self-organising systems remained a rather broad and not that
precisely defined category in literature. According to [10], a
self-organising system can change its internal structure and
functionality at run-time without any explicit direction mech-
anism. Autonomic computing aims at solving the emerging
complexity crisis in software engineering. Since humans are
no longer able to deal with the rising complexity, dynamics,
heterogeneity and uncertainty of future systems, these systems
should be enabled to (autonomically) manage themselves [11].
IBM, as a main driving force behind the autonomic computing
idea, proposed a reference architecture named MAPE-k for the
autonomic manager, which executes the monitor, analyse, plan
and execute (MAPE) control loop and maintains a knowledge
base [15]. The architecture uses sensors to collect information
about the environment and the system itself.

Organic computing [13] is a related concept that on one
hand extends autonomic computing by the properties of self-
organisation and self-explanation, but on the other hand does
not require systems to be fully autonomous. The approach
introduces an observer and a controller component on top
of the adaptive system. External users provide goals to the
controller and only in case an adaptation violates these goals
or any other given constraints, the controller interferes. This
has been denoted as controlled autonomy.

Self-awareness appeared as key attribute in both autonomic
and organic computing and, subsequently, research on self-
aware computing systems has been supported by DARPA [16]
and the European Commission through its Future & Emerging
Technology programme [17].A more complete review of this
topic is provided in [18], [6], [19]. Together with a recent
Schloss Dagstuhl workshop [18], this work has already re-
sulted in two books [6], [19].

B. Camera nodes on reconfigurable platforms

Over the last decade VSNs have been deployed on a
variety of hardware platforms including embedded processors,
systems-on-chip, field-programmable gate arrays (FPGAs),
and commercial off-the-shelf (COTS) based systems [20],

[21], [22]. These resource-limited platforms enable on board
processing of only low to medium complexity computer vision
algorithms such as frame differencing, background modelling,
and feature-based object classification [3]. Thus, the func-
tionality provided by VSN nodes has mostly been restricted
to image enhancement, compression, motion detection, object
detection and tracking. Only recently, VSN nodes including
more advanced control, security and privacy-protection func-
tionality [23], [24], [25] have been proposed.

The implementation of applications on distributed (em-
bedded) systems requires a substantial software infrastruc-
ture, especially when scalability, flexibility and portability
are important design objectives. In the context of VSNs,
the software infrastructure mainly concerns operating systems
(OSs) and middleware systems. VSN nodes predominantly
run standard operating systems such as (embedded) Linux
since they provide numerous features and modules like multi-
threading and network communication and support various
third party libraries (e.g., OpenCV) to ease software devel-
opment. Middleware systems support the distribution of data
and control at the network level [26], however, there is no
clear trend towards a specific (class of) middleware systems
for VSN. Mostly ad-hoc approaches and proprietary systems
are used to realise basic data distribution and networking
functionality.

Support for adaptation is currently provided in a rather lim-
ited sense for VSN applications. If at all, adaptation capabili-
ties focus only on individual components such as routing [27],
service composition [28], or application aspects [29]. Although
FPGAs have been used for implementing VSN nodes, only
a few (wireless sensor) platforms support dynamic hardware
reconfiguration to achieve adaptation, e.g., [30], [31].

III. SELF-AWARE NODE ARCHITECTURE

A. Computational self-awareness

Self-awareness denotes a paradigm for systems and appli-
cations that pro-actively gather information, maintain knowl-
edge about their own internal states and environments and
then use this knowledge to reason about behaviours. In our
previous work, we have transferred these concepts to the
computing domain and proposed the notions of computational
self-awareness and self-expression [6], and a corresponding
reference architecture [9].

In their notion, self-awareness describes methods and mod-
els for a system to gain information about its own state
(private self-awareness) using internal sensors, and about the
environment (public self-awareness) using external sensors.
Self-expression subsumes reasoning and decision making tech-
niques to adapt to changes in the system state or environ-
ment through internal and external actuators. The notion of
computational self-awareness can provide computing systems
with advanced levels of autonomous behaviour to enable
runtime self-adaptation and management of complex trade-offs
in rapidly changing conditions. Furthermore, collective self-
awareness has been defined as the self-awareness property of
a collective system composed of many interacting subsystems.
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Fig. 1. Reference architecture of self-aware smart camera node.

Finally, Lewis et al. have introduced levels of self-awareness
to characterise different capabilities of self-aware computing
systems, from rather simple stimulus-aware systems to more
advanced goal and meta-self-aware systems. Higher levels
of self-awareness will become critical in dealing with the
complexities of future computing systems in general and VSNs
in particular [9].

B. Reference architecture

Figure 1 depicts the reference architecture of a self-aware
smart camera node. This architecture follows the principles
of computational self-awareness [9] and is composed by
components for private self-awareness, public self-awareness
and self-expression. These modules maintain and use various
models representing knowledge about the node, the network
and the environment.

The private self-awareness module abstracts data from dif-
ferent internal sensors in order to maintain models about the
current QoS level of the application and the resource utili-
sation of the node platform. The camera represents the most
important sensor and provides input for the image analysis
which is also part of the private self-awareness. The public
self-awareness module receives information from other camera
nodes and uses this information to update the models from
the network-level perspective. Instead of relying on predefined
knowledge and rules, the self-awareness modules utilise on-
line learning to maintain the models for the application, the
platform and the network.

The self-expression module performs self-adaptation of the
hardware platform as well as the application based on these
models. Self-adaptation is realised by means of actuators
which are able to dynamical modify the hardware layout and
task mapping, the camera resolution and frame rate as well
as the application’s task variants and modalities. The self-
expression module can interact with other camera nodes via
the network interface and trigger adaptation at the network
level. Note that the modules of the reference architecture

represent a generic algorithmic framework which can be
implemented by various (learning) algorithms and modelling
approaches. We introduce some concrete instantiations of these
modules in Section III-D.

C. Node platform and VSN application
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Fig. 2. VSN node platform.

A camera node is implemented on an embedded computing
platform such as Xilinx Zynq or UltraScale+ and structured
into the layers (i) hardware platform, (ii) operating system,
(iii) VSN middleware, and (iv) VSN application (cp. Figure 2).
For the operating system and VSN middleware layers we draw
on our previous research: To implement the operating system
layer we employ and adapt ReconOS/Linux, our previous
operating system for FPGA-based CPU/accelerator architec-
tures. ReconOS [32] extends multi-threaded programming to
reconfigurable hardware and allows for starting and stopping
hardware tasks at runtime as well as migrating tasks across the



hardware/software border through dynamic partial reconfigura-
tion. As VSN middleware for communication within the VSN
network we utilise Ella [33] which is realised as distributed
publish/subscribe middleware and supports runtime adaptation.

The VSN application layer consists of executable code plus
meta-data that facilitates an explicit modelling and reasoning
about the application. The meta-data includes a description
of the application in form of a task graph. Tasks can come
in different variants, which constitute different algorithms for
solving a task, and modalities, which means either a software
or a hardware implementation. Task variants and modalities
differ in functional quality and non-functional parameters,
e.g., runtime, memory, reconfigurable hardware area, and
energy. The meta-data further includes a specification of the
applications expected quality of service (QoS) which can cover
functional specifications and non-functional specifications.

Finally, the meta-data specifies possible ranges for sensor
parameters, such as the cameras resolution and frame rate.
The hardware platform layer comprises a platform FPGA,
memory, and peripherals that connect to a camera and a
network interface. The platform FPGA implements a multi-
core system with several CPU cores, reconfigurable logic for
implementing hardware accelerator cores, internal memory
and I/O cores. Due to the FPGAs reconfigurability, not only
the mapping between tasks and cores but also the layout of
the multi-core system, i.e., the number of CPU cores and the
number and sizes of reconfigurable accelerator cores, can be
changed on demand.

A VSN node’s configuration specifies both application
specific and resource specific bindings. At the application
layer, a configuration denotes a concrete set of tasks, i.e., one
variant/modality for each task, with selected sensor parameter
settings. At the resource layer, the configuration denotes an
instance of the hybrid multi-core with a number of CPUs and
hardware accelerator cores, and a mapping of tasks to cores.
An adaptation is the process of changing the configuration.
Self-adaptation is an adaptation driven from the VSN node
or network itself, without an external controller that dictates
when and how to change the configuration. Self-awareness is
our concept and model for structuring functionalities required
for self-adaptation in complex computing systems. The key
innovation of our design approach is that we look at interre-
lated adaptations at several levels: Locally, we differentiate
between adaptations of resources (hardware platform layer)
and applications (VSN application layer) on the node level;
globally, we differentiate between adaptations at a single node
and at a set of nodes at the network level.

D. Instantiations of SA and SE modules

As previously noted, our reference architecture is composed
of generic components for self-awareness (SA) and self-
expression (SE). In this section we briefly summarise concrete
instantiations of these components based on our previous
work.

1) Multi-camera tracking: Our first example is based on
object tracking in a multi-camera network [34]. In such a

network each camera is capable of tracking dedicated objects
within its field of view. Transferring tracking from single
cameras to a network of cameras requires coordination of
the tracking responsibility. A particular challenge here is to
re-identify the objects in different views and to hand-over
the tracking responsibility among the cameras. To coordinate
the object tracking responsibilities in the camera network,
a market-based handover approach was applied where the
cameras treat object tracking responsibilities as goods, pro-
viding some utility over time. The cameras can decide in a
self-expressive manner on their own when to “sell” tracking
responsibilities to other cameras using virtual auctions. An
important question for the selling camera is to whom to send
the auction invitations. Without any a priori knowledge about
the network topology, invitations could be broadcasted to all
cameras. By following this strategy the “best” camera for
taking over the tracking responsibility will receive an invitation
and may participate in the bidding.

By observing the virtual market, i.e., the selling and buying
of objects, each camera acquires knowledge about the network
topology, since neighbouring cameras much more likely par-
ticipate in the bidding for an object in the field of view. Note
that the fields of view of neighbouring cameras are in close
proximity or are even overlapping. Thus, the acquired topology
information corresponds to the vision graph of the camera
network and not the traditional network graph. We model
this topology information by a weighted graph where nodes
represent cameras and the weights represent the likelihood of
neighbourhood [35]. A successful object handover strengthens
the weight, whereas the passage of time decays the weight.
Thus, each camera maintains a model of its local network
topology in a self-aware manner.

This topology model is exploited in the self-expression
module to adapt the trading behaviour of the cameras, i.e.,
to whom bidding invitations should be sent to. Based on the
link weights and time for invitation we have proposed six
different self-expressive strategies for handover. Obviously, the
selected strategy influences the achieved tracking utility as
well as communication and computational overhead. In [34],
[36], online learning algorithms, specifically multi-armed ban-
dit problem solvers, have been used within each camera to
learn the appropriate strategy for each node during runtime.
Dynamic strategy selection leads to another level of self-aware
and self-expressive behaviour of the camera network and is
able to achieve a more Pareto efficient global performance
than with any static selection.

2) Multi-core assignment: The second example is a multi-
core assignment problem in a hybrid system comprising a
CPU core and hardware accelerator cores [37]. The multi-
core system receives a workload based on two applications,
sorting and matrix multiplication. Sorting tasks require the
system to sort 8 kilobyte blocks of 32 bit integers at a varying
rate. Matrix multiplication tasks operate on matrices of size
27 × 27 using Strassen’s algorithm. Larger matrices of size
2n× 2n with n >= 7 can be handled by performing 7n− 7
multiplications of matrices of size 27×27. The rate of sorting



tasks is varied to mimic a fractal workload as observed in,
for example, the networking domain, and the workload for
matrix multiplications is assumed to be infinite. Both sorting
and matrix multiplication tasks are enqueued in FIFOs and
from there assigned to cores.

The applications have been implemented on a ReconOS
system running on a Virtex 6 FPGA with one CPU core and
12 partially reconfigurable regions for hardware accelerators
(cmp. Section IV). A reconfigurable region may contain either
one sorting thread or one matrix multiplication thread at a
time. The multi-core assignment problem is to decide how
many sorting and matrix multiplication accelerators to config-
ure and execute in each time point, depending on the workload,
the system state, and the assignment objective. The concept of
self-aware computing has been employed and demonstrated on
several objectives. For example, in one scenario the number of
matrix multiplications was maximized under the constraint that
all sorting tasks must be executed, i.e., the FIFO storing sorting
tasks must not overflow. Another experiment has shown how to
operate under conflicting constraints such as execute all sorting
tasks and keep the chip temperature under a given limit.

The self-awareness modules gather information about the
system state, including the utilization of resources, current
performance of the accelerators, FIFO fill levels, and the chip
temperature. For deriving the assignment decisions, rule-based
self-expression strategies formulated as rules proved to be very
effective. Such rules can use all parameters provided by the
self-awareness modules, e.g., derivations of FIFO fill levels,
and even be hierarchically structured. In [37], it was also
shown how to combine several self-expression strategies to so-
called meta-strategies, where a rule or rule set, respectively,
determines the actual rule set to use.

IV. NODE IMPLEMENTATION

To realize visual sensor network nodes we leverage modern
platform FPGA technology since this technology provides the
required flexibility and adaptivity not only in software but also
in hardware. In this section we first describe ReconOS, the
operating system layer we employ for platform FPGAs, and
the levels of adaptivity enabled by ReconOS, and then report
on our current VSN node prototype implementation.

A. Adaptive Hardware Platform

ReconOS is an operating system layer for hybrid multi-
cores comprising at least one CPU core and a number of
hardware accelerators [32]. The hardware accelerators are
turned into so-called hardware threads, which enable extend-
ing the multi-threaded programming model from software to
hardware. By defining a standardised interface for hardware
threads, ReconOS allows them to transparently communicate
and synchronise with software threads and the host operating
system kernel running on the system CPU. Figure 3 shows
an exemplary ReconOS architecture with a CPU core and two
hardware threads. Hardware threads are loaded into reconfig-
urable slots, which are rectangular areas on the logic fabric.
Each hardware slot is provided with an operating system

Fig. 3. ReconOS architecture with one CPU core and two hardware threads
loaded into reconfigurable slots (from [32]).

interface (OSIF) and a memory interface (MEMIF). The
OSIF establishes the communication between the hardware
thread and the operating system kernel via a corresponding
delegate thread. To that end, each hardware thread includes an
operating system finite state machine (OSFSM) that expresses
all operating system interactions of the hardware thread. These
interactions are naturally sequential, while the remaining part
of the hardware thread typically utilises the parallelism offered
by the reconfigurable fabric. Another key aspect of ReconOS
are the delegate threads. Delegate threads are light-weight
software threads that interact with the operating system kernel
on behalf of hardware threads. The delegate thread approach
facilitates porting of ReconOS to different host operating
systems. The hardware thread’s memory accesses are routed
via the MEMIF to the memory subsystem. The memory
subsystem includes a memory management unit that allows
hardware threads to use virtual addresses, which is necessary
in case the host operating system runs on virtual memory.

A platform FPGA operated under ReconOS supports two
levels of runtime adaptation. At the first level, we can start and
stop not only software threads but also hardware threads using
dynamic partial reconfiguration. Hardware threads can be
dynamically loaded into reconfigurable slots. ReconOS even
supports time-multiplexing of reconfigurable slots through
cooperative multi-tasking [38]. The operating system kernel
signals a request for preemption to a hardware thread. The
hardware thread accepts this request by yielding only when it
wants to get preempted, which typically is at points in time
where the context is small and can be easily saved by the
thread itself. In case the hardware thread does not yield it
continues execution without any delay. This feature not only
enables improved resource usage of reconfigurable slots but
also migration of threads across the hardware/software border.

The second level of adaptation addresses the layout of the
platform FPGA, i.e., the partitioning of the available area into
reconfigurable slots. ReconOS defines reconfigurable slots of
minimal size, so-called micro slots, which on Zynq devices
comprise 600 slices (2400 LUTs, 4800 registers, 180 kB



Fig. 4. Exemplary ReconOS layout on a Xilinx Zynq 7010 SoC with three
reconfigurable slots.

BRAM, and 20 DSP blocks). Such a minimally sized micro
slot can be reconfigured in 30 − 50 ms. Larger slots can be
created by combining abutting micro slots to larger rectangular
regions. Figure 4 displays a layout for a ReconOS architecture
on a Xilinx Zynq 7010 SoC. The black area in the left of
Figure 4 represents the CPU subsystem of the chip. The re-
configurable area of the Zynq 7010 is organised in four micro
slots, from which the layout in Figure 4 forms three slots.
ReconOS can thus configure and run three hardware threads
in parallel. However, the maximum size of a hardware thread is
limited which prevents loading and executing larger hardware
accelerators. This limitation can be overcome by selecting a
different layout, for example one with one reconfigurable slot
of maximum size comprising all four micro slots.

The resulting two levels of adaptation allow for exploiting
trade-offs in performance, energy and hardware resource usage
at runtime, and will be key to optimizing VSN applications.
For example, for given data-level parallel VSN application we
can increase the performance by executing several hardware
threads in parallel. Should we be interested in low power
consumption we could employ only one hardware thread
and reduce its clock rate. When a new VSN application is
received and configured during runtime that also includes
larger hardware threads, we might need to adapt the layout.

The corresponding algorithmic methods that drive these
adaptations are part of the system’s self-expression modules,
as shown in Figure 1. These modules have to decide on
the assignment of tasks to cores and slots, on the operation
frequency of each core and the selection of the layout. The
specific challenges for developing methods to solve the cor-
responding optimisation problem are that the two levels of
adaptations are not independent, and that we have to strive
for efficient methods since they are executed at runtime. The
self-awareness modules measure current resource utilisation

figures which helps derive adaptation decisions. In more
sophisticated versions, the self-awareness modules learn from
task executions and use this knowledge for future mapping
decisions.

B. VSN Node Prototype

Figure 5 depicts the hardware architecture and a prototype
implementation of our current VSN node. The hardware of the
camera consists of a Xilinx Zynq 7010 SoC and an OmniVi-
sion OV5642 CMOS image sensor. The Zynq SoC comprises
a hard dual-core ARM Cortex A9 processing system (PS)
clocked at 666 MHz and a programmable logic (PL) FPGA
fabric. An Internal Configuration Access Port (ICAP) provided
by the Zynq SoC enables reconfiguration of the programmable
logic. The ICAP is used for the initial configuration of the PL
during boot and to partially reconfigure the PL at run-time.

The OV5642 image sensor provides image data up to
1920×1080 pixel resolution in YUV422 (colour space) format.
An 8-bit parallel low-voltage differential signalling (LVDS)
interface is connecting the sensor to the programmable logic
(PL) of the Zynq SoC. Additionally, a serial camera control
bus (SCCB) implemented on an I2C interface connected to the
processing system of the SoC is used to configure the sensor.
We implemented a custom IP core to translate the signals
from the LVDS interface of the OV5642 to the AMBA AXI4-
Stream interconnect. The AMBA AXI4-Stream interface is a
64-bit interface with handshaking data flow and is well suited
for applications focussing on the data-centric and data-flow
paradigm. Transfer video stream data between memory and
hardware is done using a video direct memory access (VDMA)
IP core. The VDMA is programmed from the processing
system (PS) and allows memory-mapped access to the image
data. Using the VDMA also allows the implementation of a
frame-buffered application on the processing system.

The programmable logic also incorporates a video process-
ing component. The video processing component is a reconfig-
urable hardware accelerator for image processing implemented
in Xilinx Vivado High-Level-Synthesis (HLS). HLS enables
fast design and implementation of hardware accelerated filters
using high-level C/C++ and System C specifications. We
realised five different filters to evaluate the device utilisation
of different implementations.

The system design is split into a static and a reconfigurable
partition. The reconfigurable partition of the system design
refers to the region of the PL that is used for reconfiguration
of the hardware accelerators and has to be large enough
to provide resources for the configuration with the highest
resource utilisation. Table I presents the resource utilisation of
different image filters. All filters are able to process YUV422
images. The resolution of all image filters is adjustable up to
a maximum resolution of 1920×1080 pixels. If turned into
ReconOS hardware threads each image filter will fit into one
micro slot, except the sobel (3x3) filter that takes two micro
slots. Naturally, some of the resources provided by a recon-
figurable slot will be unused. This effect is known as internal
fragmentation and can be minimised by defining smaller micro
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Filter LUTs Registers BRAM DSPs
pass-through 496 396 - -
simple-threshold 594 447 - -
simple-median 693 523 - -
yuv-to-grayscale 744 539 - -
sobel (3x3) 3288 2219 54kB 17

TABLE I
RESOURCE UTILIZATION OF RECONFIGURABLE IMAGE FILTERS.

Unit LUTs Registers BRAM
Sensor Input 2758 3642 36kB
Video Processing Core 4606 4956 27kB
Processing System Instantiation 371 40 -
Total 7735 8638 63kB

TABLE II
RESOURCE UTILIZATION OF STATIC SYSTEM DESIGN.

slots. Importantly, to avoid placement restrictions for hardware
threads ReconOS defines micro slots such that they exhibit the
same resources.

The static partition includes the input logic for the image
sensor, the instantiation and reset logic for the processing
system and interface logic that is necessary to transfer data
to the reconfigurable image filter. Table II shows the resource
utilization of the static system design.

The software stack of the camera consists of a boot loader
and a Linux kernel. At the operating system level access to
the ICAP and the VDMA is provided by the xdevcfg and
xvdma drivers provided by Xilinx. The xdevcfg drivers enable
to reconfigure the programmable logic completely or partially
from an application in the user-space of the operating system.
The xvdma driver can trigger the DMA transfer between
image sensor, memory and image processing components and
enables a non-blocking transfer of data by providing interrupt
signalling to the user-space application.

V. SUMMARY AND OUTLOOK

With this paper, we propose computational self-awareness
as fundamental concept for designing and operating smart
cameras and visual sensor networks. After reviewing impor-
tant work in self-aware computing systems and camera node
platforms, we have elaborated on this concept and presented
a reference architecture for a self-adaptive smart camera node
based on a reconfigurable system-on-chip platform. The plat-
form runs the ReconOS operating system which provides the
multi-threaded programming model for software and hardware
as well as two levels of resource adaptivity. Additionally,
we have also presented a prototypical implementation of a
reconfigurable VSN node.

In future work, we will make available ReconOS on the
VSN node prototype to be able to design flexible VSN
applications with improved resource efficiency. Setting up
a visual sensor network composed of multiple nodes will
allow us to quantitatively evaluate the run-time performance of
various image processing tasks implemented in either software
or hardware as well as the overhead introduced by the different
levels of reconfiguration. Based on measurements carried out
on the implemented VSN, we will devise algorithms for the
self-awareness and self-expression modules covering both the
VSN application level and the resource levels. The interrela-
tion of the adaptations at the different levels poses a major
and novel challenge, which we hope to successfully address
with the computational self-awareness approach.
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