
Distributed Visual Sensor Network Calibration
based on Joint Object Detections

Jennifer Simonjan, Bernhard Rinner
Alpen-Adria-Universität Klagenfurt, Austria

Email: Jennifer.Simonjan@aau.at, Bernhard.Rinner@aau.at
Klagenfurt, Austria

Abstract—In this paper we present a distributed, autonomous
network calibration algorithm, which enables visual sensor
networks to gather knowledge about the network topology. A
calibrated sensor network provides the basis for more robust
applications, since nodes are aware of their spatial neighbors.
In our approach, sensor nodes estimate relative positions and
orientations of nodes with overlapping fields of view based
on jointly detected objects and geometric relations. Distance
and angle measurements are the only information required to
be exchanged between nodes. The process works iteratively,
first calibrating camera neighbors in a pairwise manner and
then spreading the calibration information through the network.
Further, each node operates within its local coordinate system
avoiding the need for any global coordinates. While existing
methods mostly exploit computer vision algorithms to relate
nodes to each other based on their images, we solely rely on
geometric constraints.

I. INTRODUCTION

Visual sensor networks (VSNs) consist of spatially dis-
tributed and interconnected smart camera devices, which are
not only capable of capturing images, but can also perform
processing and communication. The camera nodes themselves
are getting smaller and cheaper nowadays, enabling a new gen-
eration of large-scale applications such as home automation,
environmental monitoring or entertainment systems. These
applications found their way into our everyday life, requiring
the networks to provide easy handling in terms of installation
and calibration. Thereby, we consider network calibration as
the process of gathering information about the topology, node
positions and orientations. A calibrated network is the basis
for many algorithms such as routing, data fusion and load
balancing. In order to support dynamic networks, calibration
techniques should also be scalable.

In this paper, we present a fully distributed, autonomous
and efficient network calibration approach as well as evalua-
tion results using our VSN simulator. Our technique enables
cameras to learn relative positions and orientations of all
other nodes in the network without relying on any global
coordinate system or explicit user-interaction [1]. Most of
the existing methods mainly rely on computer vision tasks,
such as matching images of neighboring cameras, to calibrate
cameras networks. We aimed for an approach based on simple
geometric computations, avoiding complex computer vision
algorithms and keeping communication and computational
costs low.

Our algorithm works without any central entity and relies
solely on simple distance/angle estimations. We can thus
achieve main advantages over related approaches: i) no need
for user-interaction, ii) simple and efficient geometric compu-
tations, iii) high scalability, iv) no need for a-priori network
information or global coordinate systems and v) applicability
to large-scale networks since processing is only done in the
local neighborhood.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work and section III introduces the
problem statement. Section IV presents our basic network
calibration approach. The sensor error model and a method
proposed to handle this error are discussed in section V. The
evaluation results are presented in section VI. We conclude
and outline future work in section VII.

II. RELATED WORK

Autonomous network calibration (also referred to as net-
work localization) in sensor networks is of high interest in the
research community, since calibrated networks enable higher
robustness for applications [2], [3]. This is also true for visual
sensor networks, which are often deployed in very large-
scale environments or which even have to deal with dynamic
network configurations due to mobile nodes. In general, two
categories of network calibration can be distinguished based
on whether neighborhood is represented by links or distance
and orientation information.

i) network topology: estimation of the links between nodes
ii) network calibration: estimation of the positions and/or

orientations of nodes
In case of network topology estimation, the topologies are

often represented as graphs which do not contain position
and orientation information [4]–[6]. Since our focus lies on
calibration techniques which can estimate node positions and
orientations, we present here only algorithms which are capa-
ble of such a detailed network calibration.

One calibration example is the approach of Lv et al. [7],
in which cameras compute the vertical vanishing points and
the horizon line from the motion of a walking human. This
information is then used to compute intrinsic and extrinsic
camera parameters.

Another example is the algorithm introduced by Liu et
al. [8] for single cameras. It uses the height distribution of
multiple humans in a moderately crowded scene to generate

a mapping between 3D objects and their projections in the
2D image plane. The authors developed a robust algorithm to
estimate the pedestrians’ height and orientation distribution,
which was then used to intrinsically and extrinsically calibrate
a camera. The approach was extended to camera networks in
[9]. All cameras are calibrated to their own local coordinate
system independently and then they register to a shared global
world coordinate system.

The approach proposed by Possegger et al. [9] is able
to extrinsically calibrate a network of static and pan-tilt-
zoom (PTZ) cameras. For that purpose, the cameras rely
on correspondences between the tracks of walking humans,
from which they compute all head and foot locations. These
locations are then used to estimate the extrinsic parameters of
the cameras.

Ortega et al. [10] proposed a method for external calibration
in outdoor camera networks with small or no overlapping fields
of view (FOVs). The algorithm is based on matching the 3D
lines of images, which were computed from dense 3D point
clouds of the scene. However, the user has to manually obtain
the nominal calibration on an aerial view in the first stage.

Yin et al. [11] introduced a semi-automatic calibration
approach, which combines tracked blobs with user-selected
features to recover camera homographies. The scene infor-
mation is then used to achieve object correspondences across
multiple views. Recovering homographies is an even more
detailed calibration approach than estimating positions and
orientations.

Guan et al. [12] proposed a VSN calibration method, which
analyzes the tracks of pedestrians. Using these tracks, cameras
first estimate the 3D positions of pedestrians in their local
coordinate system. Next, the local coordinate systems are
transformed to each other in a pairwise fashion. A main
advantage is, that this method can handle the case where
persons are moving along a straight line (usually introducing
the co-planarity problem). The general idea of this work is
similar to ours, however their main focus lies on the computer
vision part and ours on networking and efficiency.

Most camera network calibration techniques use cost-
intensive computer vision methods such as 3D reconstruction,
work in a centralized manner or rely on user-input or global
coordinate systems. Our main interest is to develop a more
efficient and flexible technique, which can also calibrate low-
power and/or low-resolution embedded cameras in a robust
way. We avoid any central entity in order to ensure scalability
and further, we do not require any user-interaction. The
algorithm used for distance and angle measurements can be
any state-of-the-art computer vision method or even based on
a different sensing modality such as infrared.

III. PROBLEM STATEMENT

We consider a set of n ∈ N cameras

C = {c1, ...,cn}

where a camera ci has a certain position and orientation
which is initially unknown. All cameras operate solely on their

respective local coordinate systems within which they define
their own position as (xi = 0,yi = 0) and their orientation as
ϕi = 0◦. This means, that there exist n different coordinate
systems in a network of n cameras. In the following we specify
the calibration problem in 2D; it can be easily extended to 3D
by introducing a further parameter for the height of the camera.

Further, we define a set of m∈N objects, which can be any
targets or key-points used for the sensor measurements

O = {o1, ...,om}

where an object o j is represented as a 2D point with a certain
position (u j,v j). Cameras are able to estimate local distances
d ji and angles αi j to objects in case they are within the
camera’s FOV. Since cameras define their own orientation as
ϕi = 0◦, the horizontal angle to an object is positive if the
object was detected in the right part of the FOV and negative
otherwise. The FOV of a camera is illustrated by the gray
colored area in Figure 1, whereby di j is the locally measured
distance from camera ci to object o j, and αi j is the local angle
at which the object was detected by the camera.

xi

yi

φi=0°

*

oj
αij

dij

ci(0/0)

Fig. 1. The FOV of a camera ci including its local coordinates and orientation
and a detected object o j . The locally measured distance to the object is di j
and the measured angle is αi j .

Two cameras ci and c j are considered as neighbors, if they
have an overlapping FOV. The overall goal is, that cameras
gather a global network view by estimating positions and
orientations of all other nodes in the network autonomously.
Note, that the global view is constructed w.r.t. a camera’s
local coordinate system, since we do not have access to any
real world coordinates. Since we consider a decentralized
network, we distribute the calibration tasks to each camera. For
our calibration algorithm we assume following capabilities:
i) cameras can communicate with each other, ii) cameras
are synchronized and intrinsically calibrated, iii) cameras are
capable of object detection and matching and iv) cameras can
locally measure the distance and the angle to detected objects.

IV. NETWORK CALIBRATION ALGORITHM

We have developed an algorithm called Camera Net-
work Self-Calibration (CaNSeC), which enables simple, au-
tonomous network calibration. The algorithm consists of three
parts, namely i) object-based estimation, ii) 1-hop neighbor
calibration and iii) network-wide calibration. In the object-
based estimation, cameras construct the so-called observation
vector υci , which includes information about detected objects.
The 1-hop neighbor calibration algorithm calibrates cameras

with overlapping FOVs (considered as neighbors) in a pairwise
manner, using the observation vectors. A pairwise calibration
results in a localization vector τhi. This vector is used in
the network-wide calibration to carry calibration information
through the network to extend calibration to non-neighboring
nodes.

Object-based estimation: In the object-based estimation,
cameras measure distances and angles to objects. Whenever
an object o j is detected by a camera ci, the camera extracts
an object descriptor fi j, measures distance di j and horizontal
angle αi j to the object and generates a time stamp tz.

Cameras extract descriptors from detected objects to enable
a re-identification of objects at neighboring cameras. De-
scriptors typically include object characteristics such as color,
texture or shape. There is a lot of research in the field of object
re-identification, especially on the design of discriminative,
descriptive and robust visual descriptors [13]. We will thus
make use of existing methods, from which we will choose
one with low complexity.

Using all these sensor measurements, cameras construct the
following observation vector:

υci = (tz, fi j,di j,αi j)

Since cameras assume to have an orientation of ϕh = 0◦, the
object’s position (ui j,vi j) is defined by the polar coordinates:

ui j = di j · cos(αi j)

vi j = di j · sin(αi j)

Whenever a camera has finished the object-based estimation, it
broadcasts its observation vector, which will trigger the further
calibration process on neighboring cameras. The pseudo code
is shown in algorithm 1 and runs on each camera in the
network.

Algorithm 1 Object-based estimation algorithm
on object o j is detected at camera ci

generate time stamp tz
generate object identifier fi j
estimate distance di j to object
estimate angle αi j to object
broadcast observation vector υci

1-hop neighbor calibration: 1-hop neighbors are cameras
which have an overlapping FOV, being thus directly connected
via joint object detections. A joint object detection between
two cameras ci and ch is defined by the following function

joint(oi j,oh j) =

{
1, (fi j− fh j < ε)∧ (tzi − tzh < ω)

0, otherwise
(1)

where fi j and fh j are the object descriptors, tzi and tzh are the
time stamps at which the objects were detected, and ε and
ω are error tolerances depending on the sensor measurement
technique and the frame rate, respectively. To be able to
determine the difference (fi j− fh j) of two object descriptors,

a metric needs to be defined depending on which object
characteristics are used for the descriptors.

This algorithm calibrates neighbors in a pairwise fashion
and starts whenever an observation vector υci is received
by a camera. First, the receiving camera ch determines if
joint(oi j,oh j) = 1. If so, camera ch uses the received distance
di j to estimate the position of the sending camera ci. Therefore,
it estimates a circle with radius di j and center (uh j,vh j) using
following equation

d2
i j = (xi−uh j)

2 +(yi− vh j)
2 (2)

The circle estimation of camera ch to locate camera ci is
depicted in Figure 2. After one joint object detection, a camera
can thus constrain the neighbor’s position to a circle.

dhj

αhj

dij

ch

(uhj,vhj)

Fig. 2. Position estimate of camera ch to locate the neighboring camera ci.
Camera ci lies somewhere on the estimated circle.

With further joint object detections, additional circles are
estimated resulting in a system of non-linear equations, which
is solved to find the relative position of the neighboring node.
Three circles are enough to define a unique solution. Figure
3 shows an example of two cameras and three joint object
detections, after which the position of the neighboring camera
was estimated.

Fig. 3. The estimating camera is depicted by a small blue circle located in the
origin. Each large circle represents a joint object detection and the crosses
depict all circle intersections. The small red rectangle shows the estimated
position of the neighboring camera.

As soon as the neighbor’s position is determined, the relative
orientation is estimated. Camera ch calculates the angle β

between the neighbor’s position (xi,yi) and the position of the

object (uh j,vh j). To find the relative orientation of camera ci,
the received angle αi j and the calculated angle β are summed
up as shown in the following equation

ϕi = arctan
vh j− yi

uh j− xi
· 180

π
+αi j (3)

The angle estimation of camera ch to orient camera ci is
depicted in Figure 4. β is the angle of interest and ϕich

is the
unknown.

(0/0)ch

αh

x

(uhj/vhj)

φich

αij

β φh=0°

ci(xich/yich)

Fig. 4. Angle estimation of camera ch to orient camera ci. β is the angle
which needs to be calculated and ϕich

is the unknown.

After a 1-hop neighbor localization has been finished, a
localization vector τ, including the relative position (x,y)
and orientation ϕ of the neighbor w.r.t. the local coordinate
system of the camera which performed the localization, is
broadcasted. The localization vector τhi is thus constructed
by camera ch, to inform other neighbors about camera ci

τhi = (xich ,yich ,ϕich)

The pseudo code of the 1-hop neighbor calibration is shown
in algorithm 2 and runs, as algorithm 1, on each camera in
the network.

Algorithm 2 1-hop neighbor calibration algorithm
On υci is received at camera ch

if object o j was detected then
if tzi − tzh < ω and fi j− fh j < ε then

estimate position of sender node using equation 2
estimate orientation of sender node using equation 3
broadcast localization vector τhi

Network-wide calibration: This part of the algorithm cal-
ibrates the whole network by exchanging localization vectors
between multi-hop neighbors. Assume camera cg has already
localization information of camera ch and wants to gather
information about camera ci using the received localization
vector τhi of camera ch. If the sending camera ch has been
localized already, cg knows the relative position of ch and
can use it to transform the received coordinates of ci to its
own local coordinate system. This is done by rotating and
translating the received coordinates:(

xicg

yicg

)
= R ·

(
xich

yich

)
+T (4)

where R is the rotation matrix, T the translation vector
and (xich ,yich) are the coordinates of camera ci w.r.t. to the
coordinate system of camera ch. The rotation matrix R is
defined using the known orientation ϕhcg of camera ch, and the
translation vector T using the known coordinates (xhcg ,yhcg)
of camera ch:

R =

[
cos(ϕhcg) −sin(ϕhcg)
sin(ϕhcg) cos(ϕhcg)

]
,T =

(
xhcg

yhcg

)
The orientation ϕicg of camera ci is determined by the sum of
the known orientation ϕhcg and the received orientation ϕich :

ϕicg = ϕhcg +ϕich (5)

Figure 5 depicts the process of transforming the coordinates
of camera ci from the coordinate system of camera ch to that
of camera cg. The translation vector is depicted on the left side
of the figure and the rotation is depicted on the right side.

cg

ch ci(xich/yich)

ci(xich/yich)

T

xhcg

yhcg
R

ch

cg

Fig. 5. Translation (left) and rotation (right) to transform the coordinates of
camera ci from the coordinate system of camera ch to that one of camera cg.

If ch has not been localized yet, cg postpones the trans-
formation of ci until the position of ch is known and can
be used for the transformation. The network-wide calibration
algorithm thus calibrates the whole network step by step on
every camera. The last paragraph in section VI discusses how
to save resources by executing the algorithm on only one node.

The only requirement to achieve a complete network cali-
bration, is a connected network. The network-wide calibration
does not need a fully connected network. However, the higher
the node degree of a network, the faster and the more precise
the calibration. In case of a non-connected network, each
cluster of cameras that is connected is calibrated. The pseudo
code of the network-wide calibration is shown in algorithm 3.

Algorithm 3 network-wide calibration algorithm
On τhi is received at camera cg

if the camera ci has not been localized yet then
if the sender ch has already been localized then

transform the received coordinates of ci to own local
coordinate system using equations 4 and 5
broadcast localization vector τgi

else
postpone transformation until ch is known

V. CALIBRATION WITH INACCURATE MEASUREMENTS

Since sensor measurements cannot be assumed to deliver
accurate results, error modeling and handling is important to

achieve a robust calibration. In order to compensate errors in
sensor measurements and computer vision, we rely on more
than three joint object detections and we change our geometric
model such that it can handle those errors.

Sensor error model: Distance measurements are super-
imposed with a uniformly distributed error within the limits
[−ρ,+ρ]. The limits of the uniform distribution increase
with increasing distance to objects, since object identification
and distance measurements become typically less reliable the
further objects are away from the sensor. We therefore model
ρ as a function of the distance:

ρ = f (d) = k ·d (6)

Error handling: The inaccurate sensor measurements
introduce an uncertainty in the object-based estimation, which
results in following changes in the observation vector:

υci = (tz, fi j,di j +η,αi j)

η is a random variable, which is used to generate an uniformly
distributed uncertainty around the true distance as shown in
Figure 6.

ci

oj

uniform distribution
used to model
uncertainty

actual
distance

dmin

dmax
ρij

ρij

ci

Fig. 6. An error ring following a uniform distribution around the actual
distance value.

Using the new observation vector, distance estimations to
objects result in a ring instead of a circle (see Figure 6). The
object lies somewhere in the colored area of the estimated
ring. Thus, estimating the position of a neighboring camera
results in an area instead of a single point. We express this
area by its center and its size.

Figure 7 shows the position estimation of camera ch to
locate camera ci after 2 joint object detections and thus two
estimated error rings. The intersection areas of all rings are
calculated in order to find the position of the neighboring
camera. Camera ci is located somewhere in the striped areas
depicted in Figure 7.

Intersecting multiple error rings results in one area which
is contained in every ring. The center of this area is then
chosen as the neighbor’s position (xest ,yest). The pseudocode
of the 1-hop neighbor calibration considering the sensor error
is shown in algorithm 4, where the user-defined parameter K is

the number of rings required to trigger the position estimation.
The more rings the more precise the solution, but the more
joint object detections are required. If e.g., K = 6, a camera
waits for 6 joint object detections (and thus rings) per neighbor
before it decides for the position.

Algorithm 4 1-hop neighbor calibration algorithm
On υci is received at camera ch

if object o j was detected then
if tzi − tzh < ω and fi j− fh j < ε then

estimate new error ring
intersect it with all previously estimated rings
if number of rings > K then

find intersection area which lies on every ring
use area center as estimated position of camera ci
estimate orientation of camera ci
broadcast localization vector τhi

Other algorithms which model uncertainties in localization
for wireless sensor networks can be found in [14] and [15].

ch

ci

Fig. 7. Two error rings estimated by camera ch to locate camera ci. The ring
intersection areas are the possible locations of camera ci and are depicted by
black stripes.

VI. EVALUATION

In this section we present the results of our evaluations,
which have been achieved by our visual sensor network
simulator. We have developed this simulator using .NET and
Windows Forms to enable easy and fast development and
testing of algorithms. So far we can simulate a network
of static cameras with arbitrary FOVs and certain internal
parameters such as resolution and sensor range. The basic
camera model was adopted from Dieber et al. [3]. Further,
we can simulate objects which are modeled as 2D points with
a specific location (u j,v j).

For the evaluation, we measured the accuracy of estimated
positions and orientations, the number of sent and received
messages, the duration of the calibration process and the
error propagation through the network. For that purpose we
simulated the following three network setups:

- Scenario 1: 3 cameras, average node degree of 2
- Scenario 2: 30 cameras, average node degree of 4
- Scenario 3: 30 cameras, average node degree of 2

In the first two scenarios each camera has multiple neighbors
and the networks aim to cover a certain area like a hall. The
cameras of the second scenario were placed in a way such that
they could cover a corridor or a street. The first evaluations
were done using a noise gradient of k = 0.1, triggering the
ring intersection after K = 6 joint object detections per each
pair of cameras. Objects were randomly added to the scenarios
such that each camera could see at least 2 of them.

Figure 8 shows scenario 1 and the position estimation
results.

Fig. 8. The calibration results of a network of three cameras. The crosses
depict the estimated positions and the circular sectors the ground-truth FOVs.

The colored circular sectors depict the ground-truth FOVs
of all cameras, and the small colored crosses are the posi-
tions which were locally and independently computed by the
cameras and transformed to the world coordinate system after
the simulation. The small crosses are thereby the localization
results of the cameras depicted in same color (e.g., green
crosses are the estimations of camera 2). The estimated
positions are very close to the real ones (detailed accuracy
measurements will be presented later). Scenarios 2 and 3 and
their position estimation results are shown in Figure 9 and
Figure 10, respectively.

Figure 11 shows the evaluation results of the accuracy
measurements. The upper plot depicts the error of the esti-
mated positions and the lower plot the error of the estimated
orientations. We normalized the position estimation error in
order to provide a meaningful comparison between different
network setups and sizes. The normalized position error was
calculated using the root-mean-squared error (RMSE) and
dividing the result by the diameter of the network rnet as shown
in equation 7.

RMSEpos =
1

rnet

√
∑

n
k=1(x

true
k − xest

k)2 +(ytrue
k − yest

k)2

n
(7)

where n is the number of cameras in the network, (xtrue
k ,ytrue

k)
is the ground truth position of camera ck, (xest

k ,yest
k) is the

estimated position and rnet is the diameter of the network.

Fig. 9. Camera networks of 30 cameras placed in a way such that they could
e.g., cover a large area. The crosses depict the estimated positions and the
sectors the ground-truth FOVs.

Fig. 10. Camera networks of 30 cameras placed in a way such that they
could e.g., cover a corridor. The crosses depict the estimated positions and
the sectors the ground-truth FOVs.

The orientation error was computed using the RMSE, without
any normalization as shown in equation 8.

RMSEorient =

√
∑

n
k=1(ϕ

true
k −ϕest

k)2

n
(8)

where ϕtrue
k is the true orientation of camera ck and ϕest

k the
estimated orientation. The diagrams in Figure 11 show that the
large network with small node degree performs worst. This is
because the error is accumulated when executing algorithm 3
for the network-wide calibration. For the other two networks,
the positioning error stays below 0.2 and the orientation error
stays below 22◦ for noise gradients of k < 0.25. Since we
normalize the positioning error by the network diameter, this
means that the error does not exceed 20% of the network
diameter size.

The communication costs are presented in Figure 12. The
upper plot shows the average number of sent messages per
node and the lower plot the average number of received

Fig. 11. Normalized RMSE of position and orientation over varying noise
level for different network sizes and node degrees.

messages per node required to calibrate the whole network.
The large networks with 30 cameras require per node for a
noise gradient of k = 0.05 on average 35 sent and 870 received
messages, while the small network requires 9 sent and about
19 received messages. The communication costs are high since
cameras broadcast every observation and localization vector.
These broadcasts significantly increase especially the received
messages. We will discuss improvements and communication
cost savings in the last paragraph of this section.

Fig. 12. Average number of sent and received messages per node until the
whole network calibration was finished for different network sizes and node
degrees.

Figure 13 shows the average number of jointly detected
objects per camera pair, required to calibrate the whole net-
work. As the graph shows, there is no major difference for
the different types of networks, which makes sense since the
calibration process is based on pairwise camera interaction,
which does not change with changing network setups. For
noise gradients of up to k = 0.2, none of the scenarios requires
camera pairs to detect more than 14 objects jointly. A realistic

Fig. 13. Simulation steps required for the whole network to calibrate for
different network sizes and node degrees.

error scenario of k = 0.05 would require camera pairs in each
scenario to detect approximately 8 objects jointly.

We simulated an additional scenario in order to take a closer
look on the error propagation through the network (see Figure
14). In this scenario, the network topology corresponds to a
single line without any circle. The network consists of 10
cameras, with an average node degree of 2. The FOV of
camera c1 overlaps only with that of camera c2, which means
that almost all cameras are localized using the network-wide
calibration algorithm. Figure 14 shows the positioning results
of camera c1 compared to the ground truth. The FOVs of all 10
camera, depicted in different colors, represent the ground truth.
The blue crosses are the camera positions which were locally
estimated at camera c1, whereby camera c2 was positioned
using the 1-hop neighbor calibration and cameras c3−c10 were
positioned using the network-wide calibration algorithm.

Fig. 14. Ground truth network compared to the estimated position results of
camera 1 (blue crosses).

To understand the process better, we take a look at camera
c3, which can localize cameras c2 and c4 directly since they are
1-hop neighbors. Camera c3 broadcasts the localization vectors
for camera c2 and c4, which means that camera c2 learns the

position of camera c4 through translation and rotation. Camera
c2 will further communicate the newly learned position to
its neighbors, which means that now also camera c1 can
estimate the position of camera c4 since it knows camera c2
already (pre-requisite to enable translation and rotation). In this
manner, calibration information is carried through the network.
However, the errors of every single camera are accumulated
during this process. This is what we can also see from Figure
14. The error for cameras closer to camera c1 is smaller than
for cameras further away. For this simulation scenario we
used a noise gradient of k = 0.1 and we triggered the ring
intersection after K = 6 joint object detections.

Complexity and improvements: CaNSeC is a resource ef-
ficient algorithm, which solely relies on geometric calculations
including trigonometric functions. Communication costs are
expected to be low since observation and localization vectors
are only required within the neighborhood of nodes. In our
simulation study we have not limited the data exchange to this
neighborhood, but used broadcasts for the data exchange. As a
consequence we achieved high communication costs. Our next
steps will thus include significant reduction of messaging. This
will be done by introducing unicast messages in algorithms
3 and 4 and by splitting camera FOVs into several parts, in
which newly created observation vectors are broadcasted only
with a certain probability. Introducing unicast messages does
not reduce the number of communicated messages in the case
of a wireless medium, however, it reduces processing costs,
since cameras which are not the intended receivers do not need
to process the message. In a wired medium, unicast messages
would significantly decrease the number of received messages
on all cameras.

There is also a significant potential of reducing communi-
cation and processing costs in the network-wide calibration
algorithm since a global network view can be constructed
on just one node. This means, that localization vectors are
communicated only to one specific node. It would also be
possible to introduce a further step before algorithm 1, which
takes care of neighbor discovery, which would allow nodes to
send observation vectors only to neighbors. Having these sim-
ple extensions, communication and processing costs will only
increase with increasing node degree but not with increasing
network size.

In order to improve the calibration results for large networks
and networks with a small node degree, we will introduce
an online adaptation and refinement of estimated positions in
algorithm 4.

VII. CONCLUSION

In this paper we presented an autonomous and efficient
VSN network calibration algorithm, called CaNSeC, which
delivers promising results. Cameras learn relative positions
and orientations of each other in a fully decentralized way.
Summarized, we can say that CaNSeC turned out to be a
fast and resource efficient method to calibrate distributed
camera networks without any central entity and without user-

interaction. With further extensions, the algorithm will use
even less messages and will refine estimated positions in
order to deliver more precise results. We believe that a major
factor of future networks will be usability and scalability since
networks increase and become part of our everyday life.

ACKNOWLEDGEMENTS

Many thanks to Matthias Weyrer for his valuable ideas and com-
ments. This work is supported by the research initiative ‘Intelligent
Vision Austria’ with funding from the Austrian Federal Ministry
of Science, Research and Economy and the Austrian Institute of
Technology.

REFERENCES

[1] J. Simonjan and B. Rinner, “Autonomous, lightweight calibration of
visual sensor networks with dense coverage,” in Proceedings of the IEEE
International Conference on Pervasive Computing and Communication
Workshops. IEEE, 2016, pp. 1–4.

[2] V. P. Munishwar and N. B. Abu-Ghazaleh, “Coverage algorithms for
visual sensor networks,” ACM Transactions on Sensor Networks, vol. 9,
no. 4, pp. 1–36, 2013.

[3] B. Dieber, C. Micheloni, and B. Rinner, “Resource-aware coverage
and task assignment in visual sensor networks,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 21, no. 10, pp. 1424–
1437, 2011.

[4] T. Ellis, D. Makris, and J. Black, “Learning a multi-camera topology,”
in Proceedings of the Joint IEEE Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance (VS-PETS), 2003,
pp. 165–171.

[5] B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder, G. F.
Domínguez, and P. R. Lewis, “Self-aware and self-expressive camera
networks,” Computer, vol. 48, no. 7, pp. 21–28, 2015.

[6] A. Van Den Hengel, A. Dick, and R. Hill, “Activity topology estimation
for large networks of cameras,” in Proceedings of the IEEE International
Conference on Video and Signal Based Surveillance. IEEE, 2006, pp.
44–49.

[7] F. Lv, T. Zhao, and R. Nevatia, “Camera calibration from video of a
walking human.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 9, pp. 1513–1518, 2006.

[8] J. Liu, R. T. Collins, and Y. Liu, “Surveillance camera autocalibration
based on pedestrian height distributions,” in Proceedings of the British
Machine Vision Conference, 2011, p. 144.

[9] H. Possegger, M. Rüther, S. Sternig, T. Mauthner, M. Klopschitz, P. M.
Roth, and H. Bischof, “Unsupervised calibration of camera networks
and virtual ptz cameras,” in Proceedings of the 17th Computer Vision
Winter Workshop, 2012.

[10] A. Ortega, M. Silva, E. H. Teniente, R. Ferreira, A. Bernardino,
J. Gaspar, and J. Andrade-Cetto, “Calibration of an outdoor distributed
camera network with a 3d point cloud,” Sensors, vol. 14, no. 8, pp.
13 708–13 729, 2014.

[11] F. Yin, D. Makris, S. A. Velastin, and T. Ellis, “Calibration and object
correspondence in camera networks with widely separated overlapping
views,” IET Computer Vision, vol. 9, no. 3, pp. 354–367, 2015.

[12] J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips, “Extrinsic calibration of
camera networks based on pedestrians,” Sensors, vol. 16, no. 5, p. 654,
2016.

[13] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and trends
in person re-identification,” Image and Vision Computing, vol. 32, no. 4,
pp. 270–286, 2014.

[14] J. Fang, D. Duncan, and A. S. Morse, “Sequential localization with
inaccurate measurements,” in Localization Algorithms and Strategies for
Wireless Sensor Networks: Monitoring and Surveillance Techniques for
Target Tracking. IGI Global, 2009, pp. 174–197.

[15] M. L. Sichitiu, V. Ramadurai, and P. Peddabachagari, “Simple algorithm
for outdoor localization of wireless sensor networks with inaccurate
range measurements,” in Proceedings of the International Conference

on Wireless Networks, 2003, pp. 300–305.

