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Abstract— In a goal-oriented Human Robot Collaborative
(HRC) scenario, where the goal is to complete an assembly
process, a robust object tracker might not necessarily fulfill its
functional role due to the dynamic nature of HRC. Moreover,
for an efficient HRC, the functional role of the object tacker
should not only be limited to localizing and tracking objects
for robotic manipulation. It should also help to determine
the current state of the assembly process and verify if the
chosen action has been successfully performed and thus to
enable an uninterrupted completion of an HRC assembly
process. We present a Context Enhanced Framework for Multi
Object Tracking, that i) allows uninterrupted completion of an
assembly process, ii) improves the overall functional accuracy
of the object tracker from 49 percent to 96 percent, and
iii) enables the object tracker to handle multiple instance of
multiple objects in a HRC setting.

I. INTRODUCTION

To enable a robotic system to understand the circum-
stances under which it operates, and react accordingly in
a cooperative fashion with the human in a human robot
collaborative (HRC) scenario, is a challenging task [1]. An
example of such a cognitive robotic system is shown in
Fig. 1, where cognition arises from the closely coupled
integration between the reasoning, simulating, planning and
adapting behavior of the robotic system.

Recognition and localization of objects of interest and
tracking them is of vital importance in order to perceive
and understand the current situation in HRC. To facilitate
manipulation of objects by the robot, the object localization
and tracking needs to be performed in 3D (3 DOF posi-
tion + 3 DOF orientation). However, abrupt object motion,
occlusions, clutter, complex object shapes and noisy sensor
data make tracking difficult. If we consider multiple objects
and real-time computational requirements in HRC, tracking
objects in 3D becomes even more complicated.

In the scientific literature, there are approaches (e.g., [4])
that are capable of robustly tracking multiple objects in
3D and in near real-time. However, when applied to real-
world HRC assembly processes, such approaches fall short
in achieving high performance in terms of their functional
role. The functional role in this aspect does not concern
the overall accuracy of the tracker, but is concerned with
”how good” the tracker performed in aiding the robotic
system to complete the HRC assembly process (AP). In
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Fig. 1. A Robot manipulates objects of interest in coordination with a
human operator in an integrated cognitive architecture, where the robot per-
ceives, reasons, plans, executes and adapts. The image also depicts the object
tracking, action recognition and communication interface modules that are
integrated within the cognitive architecture for human robot collaboration.

such APs, the functional role of the tracker is not just
limited to facilitate manipulation of objects. It is also re-
sponsible for determining the current AP state and also to
verify the success of a performed action (since these steps
involve/require localization/tracking of relevant objects). The
role of the object tracker in determining the current state
of AP is concerned with tracking the objects of interest
and providing the suitable object 3D pose for manipulation.
In case of verifying the action, the object tracker can also
help in verifying the action consequence (e.g. to confirm
that an object has been displaced as expected during the
manipulation). This adds another layer of redundancy for the
HRC assembly to confirm that the action has succeeded (or
failed) and the assembly process can proceed accordingly.

If the tracking approach fails to correctly localize/track
the object(s) of interest during a particular step of the
AP, the manipulation fails and results in an incomplete
AP. Therefore, in spite of having high accuracy, a tracking
system might fail to achieve its functional role in the AP.
One idea could be to solve such problems is to configure
the tracker to focus on specific objects depending on the
current step of the assembly process, thereby improving the
functional performance (how well the functional role was
achieved). However, extracting such information (for e.g.,
which object(s) to focus) is not trivial (and also might not
be sufficient) due to the dynamic nature of HRC assembly
processes. Additionally, in APs involving multiple instances
of similar objects, it is even more complicated in extracting
the required information. It is also very challenging for the



tracker itself to localize/track multiple instances of multiple
objects.

The contributions of this paper can be summarized as
follows:

1) development of a framework capable of extracting the
relevant context in a dynamic human robot collabora-
tive assembly process

2) improving the functional performance of object track-
ing by extending our previous work [4] to verify the
current AP state and to verify the success of action
execution

3) improving handling of multiple instances of identical
objects in the AP

Note: In this work, the relevant information required to
improve the functional performance of a module is termed
as context.

The framework presented in this paper extracts the relevant
context and can be applied to all the required modules
(perception, planning, reasoning) of the HRC assembly ac-
cordingly. However to limit the focus, more emphasis is
placed on the aspect of extracting context and its application
to improve the functional performance of object tracking in
the AP. The improved tracker is termed as Context Enhanced
Multi Object Tracker (CEMOT). The work also enables
CEMOT to handle multiple instance of multiple objects in
the AP.

The remaining part of the paper is organized as follows:
Section 2 discusses the state of the art approaches on 3D
tracking using RGBD data and approaches that use context
driven object tracking are discussed. Section 3 presents the
cognitive architecture for the HRC assembly process and
the framework to extract the relevant context and Section 4
describes CEMOT. Section 5 summarizes the experimental
evaluation. Section 6 concludes the paper with a discussion
about future research

II. STATE OF THE ART

There are are only few approaches known in literature
that deal with multiple object tracking using RGBD data and
consider context information in an HRC assembly process.
Therefore, the approaches that deal with 3D model-based ob-
ject tracking using RGBD data are discussed first. Then multi
target tracking approaches that consider context information
are briefly described. Finally, few approaches that consider
context enhanced object tracking in HRC assembly process
are discussed.

Recent work in cognitive psychology and computer vision
has shown that a statistical summary of the objects present
in the scene can serve as an extremely effective source of
information for contextual inference [5]. A recent survey on
context-based information fusion is presented in [14]. One
of the key challenges of tracking is to effectively verify
if the object being followed by the tracker is really the
required target object. Using context information is also
an attractive strategy for object recognition [17], single
target tracking [2][3], image captioning [26], multiple target
tracking [15][16] and recognizing human activities [11][13].

The concept of mining auxiliary objects or local visual
information surrounding the target to assist tracking is used
in [12]. Maggio et al., [15] propose to exploit information
about context-dependent events, such as objects entering the
scene or reappearing after occlusion and spatially persistent
clutter. However, these approaches use 2D image data as
input and hence cannot be directly integrated into HRC that
require object manipulation.

Ognibene et al., [18] integrate temporal and spatial con-
textual information to help predict and track human effectors
with an active camera in a humanoid robot interaction
scenario. The work in [19] shows how learning context
to support tracking improves robot performance in various
tasks. Most HRC approaches with task driven goals only
consider object localization for manipulation and thereby do
not consider the problems associated with dynamic envi-
ronments, tracking and manipulation of real world objects
[7][8][9].

The SMOT system [4] uses local context (for example,
assumptions that an object cannot move more than a thresh-
old between consecutive frames, direction of movement of
the object) as additional information to verify the tracking
results. The SMOT system as a standalone module is able
to efficiently deal with partial occlusions, clutter and abrupt
object motion. However, this approach faces difficulties when
included into an HRC assembly process. During which the
manipulated objects could be completely occluded, some
objects disappear and reappear in the scene resulting in
ghost detections and false positives. As mentioned in [6], the
performance of multi object tracking is based on both goal-
driven and stimulus-driven attentive and perceptual processes
as well as spatial memory representation. Along these lines
we extend the SMOT system by closely integrating it in an
HRC cognitive architecture (using the framework to extract
context) and transform it into the Context Enhanced Multi
Object Tracking (CEMOT) system.

Unlike other HRC approaches [7][8][9], our system is
capable of handling 3D tracking of multiple real-world
objects (with multiple instances of each object type) in a goal
driven assembly process. The required context for CEMOT
system is provided through the tightly integrated cognitive ar-
chitecture. This helps to improve the functional performance
and as a result improves the tracking performance of the
CEMOT system.

III. FRAMEWORK TO EXTRACT CONTEXT

A. The Cognitive Architecture

To deal with the HRC assembly process the robotic
system should be enabled with cognitive capabilities. The
architecture as shown in Fig. 2, consists of the following
components a) The Perception System provides the real-
time 3D tracking of objects with the help of the Multi Object
Tracker [4][10] and current action performed by the human
operator [23]. b) The Planning and Execution System
generates plans for future actions to achieve the given task
(goals). This includes task planning and scheduling for an
efficient human robot collaboration. These generated plans



Fig. 2. Cognitive Architecture for HRC

need to be carried out in real world where the robot plans
its path (path/navigation planning) and manipulates the en-
vironment accordingly. c) The Communication Interfaces
provide a GUI-interface for human robot communication and
simulations of the robot’s planned behavior. d) Knowledge
Management (KM) is based and extended upon KnowRob
[21] to represent and abstract knowledge. e) Perception
Reasoning (PR) understands and interprets the current state
of the environment and the assembly task. f) Task State
Reasoning (TSR) reasons about the current state of the AP
by combining information about the current state (given by
perception reasoning) and the assembly process knowledge
(knowledge management), to make decisions to plan the
next actions accordingly in coordination with the planning
and execution system, to behave intelligently, to interact
naturally with humans and aid in completing the task. The
knowledge management, perception reasoning and the task
state reasoning modules constitute the Cognitive Reasoning
System in the architecture. The CEMOT system can be seen
as a bridge between the object tracker (perception system)
and the cognitive reasoning system and is explained in detail
in Section IV.

B. Modeling Knowledge in HRC Assembly Process

An assembly process (AP) in its simplest form can be
defined as a sequence of States S, a set of Events V and a
set of Relations R. The set of States S defines the individual
steps of the assembly process. The set of Events V drives the
progress of the assembly process from one step to another.
The Relations R specify the effect of a given Event V on
a given State S in progressing the assembly process. A
detailed formal description of the AP and its constituents is
given in [20]. The architecture consists of KM that defines
the corresponding data structures to manage and abstract
the knowledge of the assembly process. This includes task
state descriptions, robotic system configuration, capabilities
of the robotic system and human operator, involved objects,
their configurations and affordances, the properties of agent’s
(human, robot) actions and their corresponding effects on
objects (see Fig. 3). The KM framework is an extended
implementation of KnowRob [21] as KnowRob provides
the following knowledge processing features: a) mechanisms
and tools for action centric representation, b) automated

acquisition of grounded concepts through observation and
experience, c) reasoning about and managing uncertainty,
and fast inference.

The knowledge is represented using ontologies (descrip-
tion logics) based on the Web Ontology Language (OWL).
SWI Prolog is used for loading, accessing and querying the
ontologies. The representation consists of two levels: Classes
that abstract terminological knowledge (type of objects,
events and actions) and Instances which represent the actual
physical objects or the actions that are actually performed.
Properties establish relations (links) between Classes, and
these links are also valid for the Instances of the respec-
tive Classes. For example, Properties define if an Agent ∈
{Human,Robot} can perform a particular action (defined
in Classes) on/with a Target ∈ {Ob jects,Robot,Human}
[20][24].

The KnowRob framework provides a suitable basis (base
ontologies) for modelling actions, objects of interest, and
capabilities of humans and robots. A collection of Prolog
rules are also provided for parsing ontologies and loading
them into the Prolog database, thus making the ontology
data accessible for database queries. We extended the base
ontologies to express an HRC Assembly Process descrip-
tion. Moreover, Prolog rules were also extended to provide
functionalities such as a) posting a snapshot created by the
Perception System into the database, b) checking if recorded
perception data fulfills the constraints of an assembly process
state, c) projecting the expected outcome of an action that is
planned for execution, and d) deriving the expected succeed-
ing assembly process state. All these functions rely on Prolog
queries (e.g. unification and proof search in the database,
difference-list operations [22]) and ontologies (e.g. deducing
facts which are not explicitely asserted in a database through
so-called ’computables’ [21] and ontology-reasoning).

C. Online Reasoning in the AP

An AP in HRC involves presence and manipulation of
several objects. The AP consists of different steps, where
each step requires a particular kind of manipulation on
specific objects. For the robotic system to successfully com-
plete the AP, it should a) determine the current state in the
AP, b) choose/plan a necessary action to progress the AP,
c) execute the planned action, d) verify if the action was
successful; All these steps are iteratively executed until the
AP is successfully completed (see Algorithm 1).

Determine the current state in the AP Given the
assembly process and assuming it begins with the initial
state, the TSR queries the knowledge management system
for information regarding the current state (initial state) in
the AP (see Algorithm 1). This data includes process state
constraints that describe a) spatial relations between objects,
present in the workspace, b) required states of the human
and robot and c) Event descriptions that lead to subsequent
assembly process states. Based on the given spatial relation
constraints the TSR deduces the objects of interest for the
given state. A snapshot of the current scene (object locations
- Tracking, human and robot states - Action Recognition



Fig. 3. Characterization of an individual state of the AP and its constituent parts (and the fashion in which knowledge is modeled for each state) that
includes object spatial configurations, robot/human states w.r.t the AP environment

Set processFinished = false;
Set executionError = false;
Set currentState = Initial State;
while

processFinished = f alse&executionError = f alse do
Query process state information from KM;
Configure PR with given context information;
Generate scene snapshot and post to KM;
Trigger state verification;
if !Verification successful then

executionError = true;
Continue;

end if
Reason current state;
if currentState = Final State then

processFinished = true;
Continue;

end if
Decide action to progress towards goal;
Parameterize action instance;
Project action outcome;
Make succ. state hypothesis(NextState);
Configure PR with given context information;
Trigger action execution;
Perform two-step action verification (PES response

and Action effects);
if !Verification successful then

executionError = true;
Continue;

end if
currentState = NextState;

end while
Algorithm 1: Step-wise execution of AP including State
Verification, Action Execution and Action Verification

and Robot Proprioception) needs to be created. The TSR
triggers the PR with the given context information a) objects
of interest available in workspace and b) robot and human
in given state (e.g. IDLE state), and requests the validation
of these constraints. The PR then waits for a stable re-
sponse of all perceptions sources, i.e. Object Tracker, Action
Recognition and Robot proprioceptive feedback to validate
the context information provided by TSR. Afterwards, PR
posts this snapshot into the Prolog database using a specific
rule. Now the verification rule is triggered, which uses the
KnowRob built in computable comp spatial to verify if the
spatial relation constraints are fulfilled and also compares
detected human and robot states with the given process
state constraints. The built in computable are functions
that help verify the spatial relations of objects, given the
current configuration of objects in the AP. If the verification
succeeds, the given process state is assumed to be verified
and the related Event descriptions are evaluated to deduce
the next action to be executed.

The given Cognitive Architecture needs to deal with
multiple instances of the same object type in the assembly
process. In order to express a spatial relation constraint
to be valid for a number of instances, we combined the
expressiveness of OWL-Classes and their related OWL-
Instances: We model a certain spatial relation of a certain
pair of object types as an OWL-Class (e.g. ’Sphere-onTopOf-
WorkTable’). To express a number of distinct configurations
of this spatial relation, an instance of the considered OWL-
Class is created and asserted with a OWL-Data-Property (e.g.
an integer value) that describes the required quantity.

Planning of actions The physical execution of an action,
deduced by the TSR, requires its proper parametrization
based on the given assembly process knowledge. Each type
of action is modeled as an OWL-Class in the assembly pro-
cess specific ontology. An action type OWL-Class describes



the principal primitive (e.g. PickAndHold or Insert) and also
describes the object types and targets affected by that action,
as well as the type of actor that is capable of executing it.
The related parametrization problem is described as finding
concrete instances of objects, targets and the actor and
generating a specific action instance. Considering the fact
of multiple object instances available, e.g. for picking an
object ’Sphere’, the main question is the following: Which
object instance shall be chosen? Our solution to this problem
is to let the Planning and Execution System (PES) decide on
selecting an appropriate instance. Even before triggering the
execution, the TSR computes the expected action outcome,
by projecting the potential action result with respect to the
current state in order to acquire information on the expected
changes in the environment (added / removed number of
object instances, changed states of human and robot).

Execution of planned action For triggering the execution,
TSR executes a Prolog rule to get all possible candidates
for object instances, target instances, and actor instances
available. This data is forwarded to the PES that triggers
human action execution (notification on GUI) or robot exe-
cution, dependent on the actor type, and configures the PR
accordingly to initiate verification of the action.

The Verification of action executed is performed in two
steps. Firstly, the response of the PES (i.e. success or failure)
is considered and second, the TSR tries to verify the whether
the expected changes in environment did happen accordingly
(e.g. object instances removed/added). This is performed by
configuring the PR to check whether specific objects were
removed / added at certain locations, or a human / robot state
change has happened. If the action results could be verified,
the TSR tries to compare the predicted state (using the given
assembly process knowledge) to the perceived current state.
From this step on, the procedure is repeated until a final state
is reached.

IV. THE CEMOT SYSTEM

As mentioned in the introduction, the functional role of
the object tracker is not just to facilitate object manipulation
but also to aid in determining the current state of the
AP and in the verification of the action executed. Even
though object trackers like SMOT [4], track multiple object
with high accuracy they cannot fulfill the functional role
of determining the current state and verifying the executed
action (evaluated in Section V). The reason is that SMOT
system is statically configured, meaning that it can track
a fixed set of multiple objects. However, dynamic changes
like sudden appearance/disappearance of objects are often in
HRC AP manipulation processes. Due to the presence of the
human operator in the loop, the dynamic nature of the HRC
AP is hard to predict.

To solve these problems, the CEMOT system (that acts
as bridge between object tracker and cognitive reasoning
system) shown in Fig.2 is used. CEMOT, first exploits the
framework explained in Section III, to extract the relevant
context. The context required by the CEMOT system in-
cludes, number of object types in the assembly process

numOb jTyp, where each object type is already known by
means of a 3D model to facilitate localization and tracking.
It also requires the number of object instances for each object
type numInstEachType, this helps the tracker to deal with
multiple instances of the same object. And finally it requires
the type of operation (mode) to be performed on each
object type instance modeO f EachInst. The different modes
of operation of CEMOT are Track, TrackAtpose, LocalizeROI
and donotTrack respectively.

A. Functional role of Tracker in AP

State verification in the assembly process To verify the
current state of the assembly process, the TSR among other
verification requires to confirm presence of a certain set of
objects. The TSR with the help of PR gathers the required
context (the object type, number of each object type, known
location if any). If the known location for an object is given,
CEMOT uses LocalizeROI to localize and track the object at
that location. Otherwise, it uses the Track mode to localize
the objects globally and then to track them globally [4].
When the tracker looses an object due to noisy sensor data,
the TSR realizes this situation and provides the previous
known pose of the object (only if the object was known to
be static in the workspace). The CEMOT system then uses
the TrackAtpose mode to track the object.

Action verification in the assembly process TSR needs
to confirm the success of each individual action before
proceeding to the next. Only relying on the proprioception
of the robot might not be sufficient to robustly verify
the success of the action. Hence, the TSR verifies the
hypothesis of action projection with the help of CEMOT
system. For example, if the hypothesis entails disappearance
of a particular object, the context is prepared accordingly
and communicated to CEMOT. The CEMOT system uses
LocalizeROI mode, which attempts to localize the object
within the ROI (previous known location of the disappeared
object) provided. However, in this case the object will not
be localized or would be localized with very low confidence
and can be easily pruned. The results are then communicated
back to the TSR which verifies the success/failure of the
hypothesis. If the object was known to be moved to a new
location, the CEMOT system is contacted to localize the
object at the projected new location.

The CEMOT system only deals with objects relevant to the
functional role (determining the state , verifying the action).
It forgets all the other objects by using the donotTrack mode.
This helps in reducing the computational time for the trackers
as they can then only track/localize the objects of interest.

V. EXPERIMENTAL SETUP AND EVALUATION

The experimental setup depicted in Fig. 4a consists of
a UR-10 robotic manipulator with 6 degrees of freedom,
which is equipped with a SCHUNK electric parallel gripper.
Two RGB-D sensors, Kinect 2 and Asus Xtion Pro provide
depth data to the perception system, to enable human action
recognition as well as object localization and tracking.

The evaluation of this work is done as follows:



TABLE I
ASSEMBLY PROCESS DESCRIPTION TO CLEAR WORKSPACE.

NOTATIONS: BASE(B), HEATER(H), TRAY(T), RING(R)

State Si Description Event/Actions possible
S0 < B,H,T,R > on table Human pick < B > and

place it into the Box
S1 < H,T,R > on table; < B >

not present
Robot pick < H > and
place it into the Box

S2 < T,R > on table; < B,H >
not present

Robot pick < T > and
place it into the Box

S3 < R > on table; < B,H,T >
not present

Robot pick < R > and
place it into the Box

S4 < B,H,T,R > not present No action possi-
ble/required

1) Demonstrate the ability of SMOT and CEMOT in
carrying out their functional role (determination of the
current state of the assembly process and verifying the
current action executed) in the assembly process

2) Showcase the ability of the CEMOT system in han-
dling multiple instance of identical objects in the
assembly process

3) Provide a qualitative comparison of the proposed CE-
MOT system against the state of the art that deals with
human robot collaborative assembly processes

The comparison is carried out with two version of the
cognitive architecture presented in Section III: one including
the CEMOT system and one without it which is referred to
as SMOT. All other aspects of the architecture remain the
same. Due to the static integration between SMOT and the
reasoning system, SMOT can only work in Track mode all
the time. The dynamic integration in case of CEMOT allows
it to work in the various modes as explained earlier.

As described in Table I, in the initial state S0 of the AP, all
objects are placed on top of the table. The TSR system given
the AP knowledge has to verify if S0 is really the current task
state in order to proceed. TSR queries PR to verify S0. PR
then verifies the same with the help of the CEMOT/SMOT
system. Given the type of objects (in this case B, H, T, R)
and number of instances of each type, the mode of tracking
is set to Track. The CEMOT system uses this configuration
message and replies back with the tracked objects. If the
number and type of tracked objects match the expectation
of PR and as a result that of TSR, the assembly process is
continued.

A total of 20 experiments were conducted, with 10 exe-
cution trials for each the SMOT and the CEMOT system.
For both trial series the objects considered in the evaluation
use case, were arranged similarly in order to provide similar
conditions for both approaches. The AP is described Table I.

In order to provide a measure of functional performance,
a collection of characteristic values, in this case determining
the current state (DCS) of the AP and verification of the
executed action (VA) were chosen and inquired during the
experiments as shown in Table II and Table III for the SMOT
and CEMOT system respectively. Additionally, the overall
accuracy of the SMOT and CEMOT for each step of the AP
is also measured.

In case of DCS, the role of object tracker is to correctly
determine if a set of objects are really localized and tracked.
Hence the statistical measure of a binary classification test
Sensitivity is used to determine DCS. To determine VA, the
role of object tracker is to correctly determine the action
consequence, in this case (see Table I) to verify if action
projection of disappearance of an object is really as such.
Therefore, Specificity measure is used. In case of initial state,
VA is not valid as the initial state is already assumed to be
start of the AP and no action verification is necessary. The
overall functional performance is the average of DCS and
VA and is denoted as OFR. In case of the initial state, OFR
measure is not valid.

A result reported by the object tracker is considered
valid, if the detection result of the tracked object is stable
(relativechange≤ 10mm) over a period of 10 frames. Since
the object tracker is capable of tracking objects at 1.8ms [4],
it can still deal with object movements that occur in an HRC
assembly process.

For the evaluation of the SMOT and CEMOT system,
only the valid results are considered. In the evaluation, true
positives (TP) refer to reported detections at positions, which
reflect the real situation (ground truth). A false positive (FP)
is a reported detection at a position in the workspace where
no corresponding object instance is located. False negatives
(FN) refer to existing objects in the real world, but the
system was not able to locate them. Finally, true negatives
(TN) refer to object instances, which are not present in
the work space and their absence is correctly confirmed.
During the experiments, in the case the system (SMOT
or CEMOT) is not able to verify the current state (DCS),
the assembly process execution is canceled and the trial is
deemed unsuccessful.

Both approaches (see Table II and Table III) show similar
performance in the initial state S0 (all objects are present).
Since SMOT and CEMOT are configured to the same number
of objects, the assembly state is correctly verified by both
approaches. In some cases, both SMOT and CEMOT fail to
verify the current state when in the initial state S0 due to bad
tracking results. This happens thrice for SMOT and twice
for CEMOT. Hence that experiment had to be terminated,
resulting in reduced trials for S1. However, the performance
of the SMOT system deteriorates and the performance of
the CEMOT system improves as the assembly process pro-
gresses.

Though the SMOT system is able to verify the current
state in some instances, it fails to verify the action executed
as it is not capable to account for the true negatives (TN)
as shown in Figure 4b-d. As the SMOT system is statically
configured to track a fixed number of objects and cannot
verify actions, the overall functional performance drops to
an average value of 0.49. On the other hand, the CEMOT
system is able to verify both the current state and the action
executed as shown in Figure 4e-h. The overall functional
performance of CEMOT amounts to 0.96. This implies that
the SMOT system manages only 49percent of the functional
role, while CEMOT fulfills 96 percent of it. Also, the overall



Fig. 4. a) Experimental setup including robotic manipulator, 3D sensor system, Human Machine interactive visualization, objects and human agent; b) to
d) performance of the SMOT system in the assembly process - the SMOT system cannot confirm the executed action due to false positive and hence quits
the assembyl process; e) to h) CEMOT system successfully verifies the current executed action and proceeds with the next steps in the assembly process;
i) to l) Assembly process with multiple instances of multiple objects.

TABLE II
EVALUATION TABLE FOR THE SMOT SYSTEM

Assembly Steps SMOT
N*OI=T DCS VA OFR Acc.

S0→4ob jects 10*4=40 0.925 NA NA 0.86
S1→3ob jects 7*3=21 0.95 0 0.475 0.71
S2→2ob jects 6*2=12 1 0 0.5 0.5
S3→1ob ject 6*1=6 1 0 0.5 0.25
S4→0ob jects 6*0=0 1 0 0.5 0

Avg. DCS = 0.935; Avg. VA = 0; Avg. OFR = 0.49; Avg. Acc.
= 0.46;
Acc.: Accuracy = (T P+T N)/(T P+T N +FP+FN); Speci f icity =
T N/(T N + FP); N: No. of trials; OI: Object Instances per each
assembly state; T: Sum of total objects per assembly state over all ex-
periments, DCS: TP/(TP+FN); VA: TN/(TN+FP); OFR: (DCS+VA)/2;

TABLE III
EVALUATION TABLE FOR THE CEMOT SYSTEM

Assembly Steps CEMOT
N*OI=T DCS VA OFR Acc.

S0→4ob jects 10*4=40 0.95 NA NA 0.91
S1→3ob jects 8*3=24 0.91 0.80 0.855 0.88
S2→2ob jects 6*2=12 1 1 1 1
S3→1ob ject 6*1=6 1 1 1 1
S4→0ob jects 6*0=0 1 1 1 1

Avg. DCS = 0.93; Avg. VA = 0.95; Avg. OFR = 0.96; Avg. Acc. =
0.925;

accuracy of the CEMOT system increases to 0.925, while the
accuracy of SMOT amounts to 0.46.

A more detailed depiction of State Verification and Action
Verification results of SMOT and CEMOT are described
in the video1 attachment. The video also demonstrates the
ability of the CEMOT to deal with dynamic changes in the
assembly process.

1Video link: https://youtu.be/8l4B0P8w8Go

TABLE IV
QUALITATIVE COMPARISON OF CEMOT SYSTEM

Approach Dynamic
Changes

SI MOT MI MOT

Wan et al [7] no yes no
Hossain et al [8] partly yes no
Hamabe et al [9] partly yes no
Savarimuthu et al [27] yes yes no
Our Approach yes yes yes
SI MOT ability to handle single instances of multiple object types;
MI MOT ability to handle multiple instances of multiple object types;
Dynamic changes including presence of humans - clutter, abrupt
changes and occlusions

To further clarify the contribution of our work, a qualita-
tive comparison of the proposed approach against existing
state of the art approaches is detailed in Table IV. The
approaches chosen for comparison are those that deal with
assembly processes in human robot collaboration scenarios
and use context in some fashion to reinforce tracking/object
recognition. The qualitative comparison evaluates the ability
of the approaches in dealing with a) dynamic changes involv-
ing humans (clutter, abrupt changes and occlusions) in the
interaction environment b) ability to track single instances of
multiple object types and c) ability to track multiple instances
of multiple object types.

VI. CONCLUSION

Assembly processes in industrial HRC often involve
manipulation of several objects and demand coordination
between the human agent and the robot. A major chal-
lenge in such dynamic environments is to make a qualified
statement on the current execution state of the considered
task. Especially, required states of objects of interest (e.g.
spatial relations) are difficult to verify but play a major



role for reasoning on the current execution state. It is also
of vital importance for such HRC system to determine if
an executed action was indeed successful. Only relying on
proprioception of the robot might not always convey the real
consequence. Hence, other functional modalities available in
the HRC system should be exploited for redundancy. Along
these lines, we argue that the functional role of an object
tracker should not just be localizing and tracking objects for
manipulation. It should be extend to determine the current
state and also verify the action performed.

For the object tracker to perform well in its functional
role, relevant information about the current state of the
AP (type of object, number of instances, etc) are of vital
importance. However, extracting such information in a dy-
namic environment is a difficult challenge. In this work, we
presented a framework that is capable of extracting such
relevant information (context) for the tracker. The context
extraction framework is then applied to a reconfigurable
Context Enhanced Multi Object Tracking (CEMOT) system
to help the tracker fulfill its functional role.

The novelty of CEMOT is that it applies 3D pose tracking
of multiple objects in an assembly process involving human
robot collaboration. The evaluation results are promising
with an increase in overall accuracy from 49 to 96 percent,
and motivate further integration of CEMOT with human
action recognition for a robust activity recognition and as a
result enable close cooperation between robot and human. In
future work we plan to exploit the aspects of object anchor-
ing with the CEMOT system. This could further improve
CEMOT’s performance in handling multiple instances of
multiple objects.
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