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Abstract— Recreational videography from small drones can
capture bystanders who may be uncomfortable about appearing
in those videos. Existing privacy filters, such as scrambling
and hopping blur, address this issue through de-identification
but generate temporal distortions that manifest themselves as
flicker. To address this problem, we present a robust spatio-
temporal hopping blur filter that protects privacy through
de-identification of face regions. The proposed filter is meant
for on-board installation and produces temporally smooth and
pleasant videos. We apply hopping blur to protect each frame
against identification attacks, and minimise artefacts and flicker
introduced by the hopping blur. We evaluate the proposed
filter against different identification attacks and by assessing
the quality of the resulting videos using a subjective test and
objective measures.

I. INTRODUCTION

Recreational videography may capture faces, licence
plates, windows of private houses and may therefore lead
to discomfort or privacy concerns. To address this problem,
privacy filters are used to modify the appearance of privacy-
sensitive image regions [1]–[6]. For example, the appearance
of a captured face can be modified in order to conceal the
identity of the person (see Fig. 1).

A privacy filter should cause only a minimal spatio-
temporal distortion. However, filters such as scrambling [3]
and hopping blur may generate abrupt changes in the inten-
sity values of consecutive frames thus resulting in unpleasant
flicker. A privacy-protected video should also prevent person
identification under different attacks, such as naı̈ve and parrot
attacks. Naı̈ve attacks compare unprotected gallery faces
against privacy-filtered probe faces, whereas parrot attacks
de-identify both gallery and probe faces. In addition to
the above, naı̈ve-SR attacks first restore (e.g. with super-
resolution (SR) [7]) filtered probe faces and then compare
them against unprotected gallery faces, and parrot-SR attacks
filter both gallery and probe faces and restore them with
super-resolution before comparing them against each other.
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Fig. 1: A face image de-identified (protected) with different
privacy filters. (a) Original image (crop). Image protected
with (b) pixelation, (c) hopping blur; and (d) proposed filter.

A privacy filter can be static or dynamic. Static filters
keep their parameters, such as the standard deviation of a
Gaussian blur, spatially and temporally constant [1], [6].
Static filters protect against naı̈ve attacks, but are prone to
parrot [2] and reconstruction attacks, such as naı̈ve-SR and
parrot-SR. Dynamic filters change their parameters spatially
and/or temporally [3], [8] and protect faces against parrot and
reconstruction attacks. However, they may introduce flicker.

Flicker-reduction approaches were developed for video
compression [9]–[14] and can be applied prior to, during or
after encoding [11], [12]. Approaches to be applied prior
to [15] and during encoding [10]–[12] are coder-specific.
Approaches to be applied after encoding measure the spatio-
temporal correlation between frames [9], [13], [14] and are
generic. However, these approaches cannot be applied to our
scenario as correlation is compromised by privacy filters that
use scrambling [3] and warping [8]. Therefore, an alternative
solution for minimising flicker is needed.

In this paper, we present a privacy-preserving filter for
drone videos that addresses the trade-off between privacy,
fidelity and temporal smoothness. To the best of our knowl-
edge, this is first time that flicker reduction is considered for a
privacy filter. The proposed filter minimises spatio-temporal
distortions and is robust against naı̈ve, parrot, naı̈ve-SR and
parrot-SR attacks. Depending on the resolution of the cap-
tured face, the parameters of an Adaptive Hopping Gaussian
Mixture Model (AHGMM) filter are adjusted according to
the target spatial distortion and are then mixed with decaying
weights to minimise flicker.

II. PROBLEM DEFINITION

We aim to robustly protect a face with minimal spatial
and temporal distortions, and to prevent various identification
attacks.

Let Rm be a privacy-sensitive region, such as a face, in
frame Im. Let R̄m be the corresponding privacy-protected
region generated with filter FΩ∗

i
, which uses as parameters

Ω∗
i ∈ {Ω0,Ω1,Ω2, ...}. The larger the index, the stronger the

distortion introduced in the privacy-protected region.
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Fig. 2: Block diagram of the proposed Spatial Hopping
Temporal Moving Average (SHTMA) filter that reduces
flicker in privacy-preserving videography.

We can split our overall aim for the privacy filter into two
concurrent and competing objectives. The first objective is
that the privacy-protection filtering

R̄m = FΩ∗
i
(Rm) (1)

should ensure a minimal spatio-temporal distortion. The
second objective is that R̄m should be protected against de-
identification attacks: when the region R̄m corresponds to
a face, the probability P (.) of recognising the identity of
the person should be no better, under various attacks, than
that of a random classifier. Therefore, if G is an unprotected,
filtered or reconstructed gallery data set of K subjects, then

P (R̄m|G)→ 1/K, (2)

where 1/K is the identification accuracy of a random clas-
sifier.

III. FLICKER-FREE SEAMLESS PROTECTION

To achieve the aim defined in Sec. II, we design the Spatial
Hoping Temporal Moving-Average (SHTMA) filter (Fig. 2).
Each frame Im is processed by a sensitive-region detector (a
face detector in our case), which returns one or more Rm.
We assume the bounding boxes of faces to be available1 and
that navigation sensors of the airborne camera measure its
height, hm, and tilt angle, θm. These parameters are used to
estimate pixel densities ρj (px/cm) of the captured face [6],
where j ∈ {h, v} indicates horizontal and vertical direction.

Rm is first protected using a spatial privacy filter, which
generates a protected region R̄s

m. We choose hopping blur
as the spatial privacy filter because of its robustness to
attacks. This robustness is achieved through pseudo-random
switching of the Gaussian kernels for different sub-regions of
a face. The hopping hinders the estimation of the Gaussian
kernel parameters from the filtered sub-regions, thus making
face recognition difficult even under parrot and parrot-SR
attacks.

The selected filter parameter for hopping blur is Ω∗
i =

(0, σ∗
j ), where σ∗

j is the standard deviation, estimated as [6]:

σ∗
j =

3ρj
πρ∗j

, (3)

1The filter relies on a face detector (and tracker) whose design is beyond
the scope of this paper.
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Fig. 3: One dimensional representation of the hopping blur
composed by superimposing a selected (red) and a supple-
mentary Gaussian function (blue). Both functions pseudo-
randomly change their parameters among the sub-regions
thus resulting in a hopping Gaussian mixture model (green).

and ρ∗j is the threshold of pixel density at which a state-of-
the-art classifier starts recognising faces better than a random
classifier.

We define a Gaussian mixture model (GMM) by com-
bining the selected Gaussian function with another Gaussian
and pseudo-randomly change the GMM parameters (mean,
standard deviation and weight) in different sub-regions of
Rm. This hopping GMM (see Fig. 3) is convolved with Rm,
and the filtered sub-regions are then globally smoothed in
order to reduce blocking artefacts.

The hopping GMM for different sub-regions of a frame
introduces flicker as the models change independently from
frame to frame. Moreover, directly replacing Rm in Im with
the protected face region R̄s

m may introduce strong boundary
effects.

To mitigate these problems and to generate temporally
smooth (and protected) face regions, we blend the internal
boundary of R̄s

m and low-pass filter it as:

R̄m = αm[αsR̄
s
m + (1− αs)Rm] + (1− αm)[αsR̄

s
m−1

+ (1− αs)Rm−1], (4)

where αs ∈ [0, 1] and αm ∈ [0, 1] are a spatial and
temporal weight, respectively. As a constant value of αs

blends R̄s
m and Rm, but does not remove the sharp boundary

between R̄m and Īm, we decrease αs moving away from
the boundary of the region. Moreover, a lower value of αm

increases smoothness but may introduce unpleasant delays in
the video when the person moves. For this reason, to balance
smoothness and delay, we adaptively select αm depending
on the motion of the face region, which is measured as
displacement of the centres of Rm and Rm−1.

IV. EXPERIMENTS

Methods. We compare the proposed SHTMA filter with
(i) AHGMM, a non-space-variant Gaussian blur that uses



hopping Gaussian kernels; (ii) Adaptive Gaussian Blur
(AGB) [6], a space-invariant Gaussian blur that uses a single
Gaussian kernel2; and (iii) Space Variant Gaussian Blur
(SVGB) [4], a linear space-variant Gaussian blur that linearly
reduces the kernel size while filtering a face region.

Classifier and attacks. We use the OpenFace [16] face
recognizer to evaluate the privacy protection performance of
a probe face video. OpenFace extracts a 128-dimensional
feature vector for each frame using a deep Convolutional
Neural Network (CNN) and then uses a Support Vector
Machine (SVM) classifier [17].

We evaluate all filters under a naı̈ve, parrot, naı̈ve-SR and
parrot-SR attacks. We use the SRCNN [7] super-resolution
algorithm for naı̈ve-SR and parrot-SR attacks.

Performance measures. As privacy measure, we use the
cumulative rank-n identification accuracy, η, defined as

η =

N∑
n=1

(
1

KM

K∑
k=1

P∑
p=1

xkp

)
n

, (5)

where N is the identification rank, K is the number of
subjects, P is the number of frames in a video, and

xkp =

{
1 if l = l̂

0 otherwise,
(6)

where l and l̂ are the true and predicted labels, respectively.
To measure fidelity, we use the Peak Signal to Noise Ratio

(PSNR) that calculates the power ratio of the original frame
with respect to the filtered frame in a video.

We measure flicker through a subjective as well as an
objective evaluation. The objective evaluation uses the max-
imum of absolute difference, ψ, of pixel intensities defined
as [18]

ψ =

H∑
h=1

V∑
v=1

ϕ(h, v), (7)

where H and V are the horizontal and vertical dimensions
of Rm, respectively; h and v indicate the pixel position; and

ϕ(h, v) = max

(
0, |R̄m(h, v)− R̄m−1(h, v)| − |Rm(h, v)

−Rm−1(h, v)|
)
, (8)

where Rm(h, v) (R̄m(h, v)) and Rm−1(h, v) (R̄m−1(h, v))
are the unprotected (filtered) pixel intensity values from the
current and previous frame, respectively.

Datasets. We captured an Ultra-HD video probe data
set with a GoPro5 camera mounted with a custom lens
(25 mm) using the set up shown in Fig. 4. For training,
we captured an HD video gallery indoor data set with
the built-in camera of a Lenovo K5 smart phone ensuring
pitch angle variation of 10◦ − 90◦ degrees. There were 11
subjects in both datasets with only frontal faces. We extracted
7944 and 399 key-frames from the probe and gallery video
data sets, respectively, using the algorithm in [19], followed

2AGB is regarded as a flicker-free filter.
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Fig. 4: Setup for the collection of a probe video dataset. The
subject moves from a distance of 26 m to 2 m towards the
camera, which is positioned at a height of 7 m or 4 m. The
variation of the pitch angle, θm, is about 20.6◦−78.5◦ from
the Nadir direction N .
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Fig. 5: Flicker ψ of (a) AGB [6] at different thresholds ρ∗j and
of (b) SHTMA at different values of the smoothing factor
αm and ρ∗j . ψ of AGB increases with ρ∗j . In contrast, ψ
of SHTMA depends on both αm and ρ∗j , and it negligibly
increases with ρ∗j , especially for low value of αm (however,
it significantly increases for high values of αm).

by manual post-processing to remove frames affected by
motion blur. We pre-processed all key-frames by equalizing
illumination, smoothing noise with a bilateral filter, aligning
by an affine transformation using eye centres and finally
applying elliptical masking to remove non-facial parts.

Impact of the parameters on flicker. The value of αm

depends on the threshold ρ∗j and the face movement. We
evaluated the effect of αm on the resulting flicker with
different values of ρ∗j on the detected faces in a video (Fig. 5).
The flicker of SHTMA depends on αm and on ρ∗j , with
a higher variation at larger values of αm. To achieve a
flicker equal to or less than AGB, αm needs to be selected
adaptively depending on ρ∗j , e.g. at ρ∗j = 0.6 px/cm, an
αm ∈ [0, 0.5] is selected depending on the face motion.

Attacks on privacy: analysis. Fig. 6 shows the results
with the unprotected probe faces for the baseline and for
a naı̈ve, parrot, naı̈ve-SR and parrot-SR attacks. Under the
naı̈ve attack, SHTMA and AHGMM maintain the highest
privacy level (i.e. η comparable to a random classifier)
even with ρ∗j = 0.6 px/cm, where AGB and SVGB result
in an η larger than that of a random classifier. SHTMA
achieves almost the same robustness as AHGMM against
a parrot, naı̈ve-SR and parrot-SR attack and it is unaffected
by temporal smoothing. In contrast, faces filtered with AGB
and SVGB have lower privacy protection (i.e. larger η).

Fidelity analysis. Fig. 7 shows the relationship between
η of a filter under different attacks and the corresponding
fidelity. SHTMA has a slightly higher fidelity than AHGMM
with almost similar values of η. This slightly increased
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Fig. 6: Rank-n identification accuracy, η, for privacy filters under naı̈ve, parrot, naı̈ve-SR and parrot-SR attacks at threshold
ρ∗j = 0.6 px/cm (first row) and ρ∗j = 0.4 px/cm (second row). The filled marker shows the mean and the vertical bar
the standard deviation of η for the multi-resolution frames. Legend: — Unprotected, — SHTMA, — AHGMM,— AGB [6], — SVGB [4]. SHTMA and AHGMM have the highest robustness against attacks (behaviour similar to
a random classifier), especially under parrot and parrot-SR attacks.
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Fig. 7: Relationship between rank-n identification accuracy, η, and fidelity, PSNR, for privacy filters under a naı̈ve, parrot,
naı̈ve-SR and parrot-SR attacks at threshold ρ∗j = 0.6 px/cm (first row) and ρ∗j = 0.4 px/cm (second row). The filled marker
shows the mean of η and PSNR, the vertical bar indicates the standard deviation of η and the horizontal bar indicates the
standard deviation of PSNR for the multi-resolution frames. Legend: — SHTMA, — AHGMM, — AGB [6],— SVGB [4]. SHTMA leads to a slightly higher fidelity than AHGMM, due to temporal smoothing. SVGB uses the
smallest Gaussian kernels for the outer parts of a face and leads to the highest value, but with lower privacy protection.

fidelity is due to temporal smoothing which also minimises
spatial distortion created by the switching kernels. In con-
trast, SVGB has the highest fidelity at the cost of obtaining
the lowest privacy level (larger η), followed by AGB. The
main reason for the higher fidelity and lower privacy level
of SVGB, compared to AGB, is that the outer parts of a
face are processed by smaller Gaussian kernels as SVGB
linearly decreases the kernel size. In summary, SHTMA
slightly improves fidelity while still robustly protecting the
faces against attacks.

Flicker analysis: objective evaluation. Fig. 8 depicts the
relationship between η of a filter under different attacks and
the corresponding flicker measured using Eq. 7. The flicker
generated by SHTMA is significantly lower than that of
AHGMM, with almost the same values of η for any threshold

ρ∗j . This lower flicker is the result of averaging the frames
with decaying weights: this temporally reduces the effect
of the pseudo-random switching of the Gaussian kernels. In
contrast, although the flicker of SVGB and AGB is similar
to that of SHTMA, SVGB and AGB lead to larger η values
(i.e. lower privacy). Comparatively, the flicker of SVGB is
slightly greater than that of AGB, due to the linear variation
of the Gaussian kernels. SHTMA lowers flicker while being
robust against navı̈e, parrot, navı̈e-SR and parrot-SR attacks.

Flicker analysis: pair-wise subjective evaluation. We
finally evaluate flicker with a set of 20 human observers:
14 males and 6 females, aged between 25 and 35 years
old, and without any image or video processing expe-
rience. We selected three videos captured with different
pitch angles/scales, and filtered them with AGB, SVGB,
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Fig. 9: Subjective evaluation results. The bars indicate the
mean (the larger the value, the more frequently videos
processed by a method were chosen because of a better
smoothness); the vertical lines represent the standard devia-
tion.

AHGMM, and SHTMA (see Fig. 10 and Fig. 11). We paired
the four filtered versions of each video, thus generating
six combinations. The observers were asked to select the
smoother video for each pair. Fig. 9 shows the results of
this subjective evaluation: SHTMA improves smoothness
compared to AHGMM, but is less smooth than AGB and
SVGB. This may be caused by small jerking in case of
significant face movements and by the adaptation of αm for
maintaining the dynamics of the motion of the face.

V. CONCLUSION

We presented a visual privacy-preserving filter for drone
videos that is based on spatio-temporal processing of face
regions and that improves the trade-off between privacy,
fidelity and temporal smoothness. The proposed filter com-
bines a robust privacy filter based on hopping blur and

Fig. 10: Sample frames from the videos used for the subjec-
tive evaluation.

temporal smoothing, which slightly increases fidelity and
significantly decreases the flicker introduced by the hopping
blur. Future work includes expanding our analysis to larger
datasets and validating the proposed filter on other types of
sensitive regions.
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