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Abstract. Simultaneous environment coverage represents a challenging
multi-agent application, in which mobile agents (drones) must cover sur-
faces by simultaneously capturing images from different viewpoints. It
constitutes a complex optimization problem with potentially conflicting
criteria, such as mission time and coverage quality, and requires dynamic
coordination of agent tasks. In this paper, we introduce a decentralized
coordination method, adaptive to a dynamic and a priori unknown 3D
environment. Our approach selects the role an agent should take on and
coordinates the assignment of agents to their computed viewpoints. Our
main goal is to cover all detected objects in the environment at a certain
quality as soon as possible. We evaluate the methods in AirSim in dif-
ferent setups and assess how the proposed methods respond to dynamic
changes in the environment.

Keywords: Multi-agent system · simultaneous coverage · drones · view-
point constellations · market-based task assignment · AirSim simulator.

1 Introduction

Mobile robots represent a prototypical example of a multi-agent system, and we
have witnessed their tremendous progress in research and applications over the
last decades. Collaborative aerial robots or multi-drone systems (e.g. [21,25]) are
a particularly challenging research field due to their flexibility, scalability and
resource limitations.

This paper deals with simultaneous coverage of unknown environments which
represents an important problem for multi-drone systems. In various applica-
tions, such as monitoring, inspection, 3D reconstruction, and depth measure-
ments, drones with onboard cameras autonomously move in the environment
to capture imagery of objects of interest with sufficient quality [15]. In case of
dynamic environments, the capturing time of images is highly relevant, and es-
timation of the state of the environment or the objects of interest may become
uncertain if the time lag of the individual image capturing is too large. Simulta-
neous coverage mitigates this problem by requiring concurrent image capturing
from k different viewpoints and thus simplifies multi-view image analysis.

In our approach, objects of interest must be first detected and then covered
by simultaneously captured images from k different viewpoints. Fig. 1 depicts
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different stages of such coverage mission where drones explore the initially un-
known environment (gray area) to detect objects (pink cuboids). Once an object
has been detected, it needs to be observed in order to abstract its shape and to
compute the required viewpoints (constellations) for the coverage. Finally, dy-
namic teams are formed and move along the paths to the assigned viewpoints.
When the required viewpoint locations are reached, the drones simultaneously
capture images with overlapping field of view (yellow area) and continue the
mission. Dynamic coordination of tasks and paths is crucial, since simultaneous
coverage constitutes a complex optimization problem with changing knowledge
about the state of the environment.

Fig. 1: Sketch of a simultaneous coverage mission where drones explore the envi-
ronment, observe detected objects, compute constellations, and navigate along
the constellations in dynamically assigned teams (here for k = 3 drones).

Weyrer and Rinner [24] introduced a path planning algorithm and a model-
predictive controller for a fixed team of two drones, and Mazdin and Rinner [16]
proposed a market-based drone assignment for coverage in simple, a priori known
2D environments. The contribution of this paper can be summarized as follows:
First, we expand the simultaneous coverage algorithm to 3D unknown environ-
ments where drones autonomously take on different roles. Second, the computa-
tion of the required viewpoints explores the tradeoff between achieved coverage
quality and coverage area. Third, we introduce an adaptive market-based coordi-
nation approach for dynamic task assignment. Finally, we perform a simulation
study of our approach using the multi-drone framework AirSim [22].

The paper is organized as follows: Section 2 briefly compares our contribution
with the state of the art. Section 3 provides the formal problem definition, and
Section 4 describes our approach. Section 5 discusses the achieved results, and
Section 6 summarizes the contribution and discusses potential future work.
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2 Related Work

Even with small-scale drones, leveraging onboard cameras is widely used for
various inspection tasks of an object’s surface, and the approaches differ whether
a priori knowledge of the environment or the object’s shape is considered. Heng
et al. [13] propose an algorithm for simultaneous exploration and coverage in
an unknown environment, whereas Bircher et al. [3] address the exploration of
an unknown environment and extend their work to include the inspection of
surfaces in [4]. An alternative approach to a similar exploration path planning
problem can be found in [26]. Galceran and Carreras [10] survey the problem of
coverage path planning and its applications.

Stereo coverage is a well-known topic of arranging two cameras with over-
lapping fields of view (FoV) [4,9,13]. Gallup et al. [11] introduce the concept
of altering the baseline and resolution by modifying the focal length in order
to keep the depth error constant, where depth error is affected by quantization
noise [6,9]. Variable baseline stereo tracking vision system used to estimate the
distance to the object being tracked is described in [19]. This paper contributes
to optimizing of constellations in terms of minimizing the depth and matching
error, increasing the overlap with adjacent coverage patches, and achieving as
high target resolution as the mission objective allows.

Among different coordination aspects, we focus on task assignment in this
paper. However, when we introduce a dynamic environment with incomplete
knowledge about its behaviour, our static task assignment problem becomes a
dynamic decision problem. On top of that, the problem includes two aspects: task
decomposition and task allocation. Some of the solutions to task allocation com-
prise market-based approaches [12,20,17], game theoretical and machine learning
approaches [14,23,27], optimization-based approaches [2,5,8], etc. We adopt the
market-based approach from [16], due to its simplicity, dynamic response and
decentralization. Moreover, we improve the approach by elaborating on the task
decomposition aspect in terms of adaptation to the partial available environment
knowledge of drones.

3 Problem Definition

The simultaneous coverage problem can be formalized as follows: A set of m
drones D = {d1, . . . , dm} covers a 3D environment which includes a set of ground
objects of interest O = {o1, . . . , op}, whose position and shape are initially un-
known. We consider static objects that neither change their position nor shape,
and semi-dynamic objects that don’t change their position but may experience
some dynamics of their shape, e.g. due to wind. After detection and sufficient
observation, an object oi is abstracted by a set of surfaces Si = {si1, . . . , sin}. A
constellation ci represents the k viewpoints, i.e. the positions and orientations
of the drones required to cover a surface or parts of it. A (part of a) surface
is simultaneously covered if k drones visit the viewpoints of the corresponding
constellation and capture overlapping images concurrently.
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The mission is achieved when the specified area is fully explored and every
surface of the detected objects has been simultaneously covered. The overall
objective is to complete the mission as fast as possible and at a certain quality.

Solving the simultaneous coverage problem can be decomposed into several
interdependent sub-problems: (1) exploring the environment, (2) detecting ob-
jects, abstracting surfaces and computing the required constellations, (3) assign-
ing drones to constellations, and (4) covering all surfaces by following collision-
free paths between the constellations. In our approach, drones autonomously
take on different roles when contributing to the different sub-problems.

4 Approach

4.1 Mission Objective

Our overall objective is to cover every surface satisfying a certain quality as
soon as possible. We have thus two sub-objectives: the mission duration and the
coverage quality. We represent the mission duration objective by the number
of constellation points Jnc, since the time it takes a drone to cover each point
comprises the time to reach it, to decelerate and stabilize as well as to wait for
the other k−1 drones in order to simultaneously capture images. The number of
constellation points is dependent on the coverage quality: For achieving higher
quality, more constellation points are necessary. We label the coverage quality,
represented by the resolution δ, with Jcq, and formulate the mission objective
as minimizing

Jmo = λ · Jnc + (1− λ) · Jcq, (1)

where λ ∈ R|0 ≤ λ ≤ 1 controls the effect of the two optimization goals. We
define Jcq = δmax

δ to be within the limits imposed by simple camera model
with image width w, minimum safe distance to the surface Dmax, and the lens
horizontal aperture angle αH , i.e. δmax = w

2·Dmax·tan(
αH
2 )

[24]. As we aim to

minimize this objective, we need to increase δ to increase the coverage quality.
We estimate the number of constellation points Jnc by

Jnc =
2 · k ·

∑n
i=1 Li · λas ·Hi · δ2

w · h
, (2)

which depends on k, the resolution δ, image width w and height h, a sum
∑n
i=1 Li

of lengths of all surfaces of an object oi (double the value due to the require-
ment of at least 50% horizontal overlap), the object’s height Hi, and a weight
parameter λas ≥ 1. As opposed to Jcq, a low value of δ reduces the mission dura-
tion. We use λas throughout the mission to tune the importance of maximizing
additional covered area for the purpose of increasing the overlap with adjacent
image patches. When λas is set to 1, we obtain no vertical additional area that
leads to no overlap between images taken from two neighboring surfaces (in a
vertical direction).
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4.2 Selection of Drone Roles

Fig. 2: Four drone roles and transition conditions.

In order to find a solution to the simultaneous coverage problem, we decom-
pose it into smaller sub-problems and adopt a bottom-up approach by solving
them individually. These sub-problems comprise exploration, object detection
and observation, and coverage, and introduce different roles that drones can
take on during the mission. Fig. 2 depicts the drone roles and the predefined
transition conditions by means of a state diagram. The default role of a drone
di is explore, represented as dei , where it moves in the environment following a
given exploration strategy for detecting objects. Once an object has been de-
tected, the drone changes its role to observe doi , investigates the shape of the
object in order to abstract surfaces, and computes constellation points. These
points represent the positions and orientations of k cameras satisfying the qual-
ity constraints (cp. Sec. 4.3). Afterwards, the computed constellation points to
cover the detected object(s) have to be assigned to appropriate drones. There-
fore, the drone changes its role to auction dai to perform this task assignment by
means of different auction strategies (cp. Sec. 4.4). The assigned drones change
to the cover role dci and execute the necessary steps for covering the assigned
surface(s).

Drone assignment is not successful if less than k drones are available for cov-
ering an object or surface, respectively. In this case, the drone can either change
to explore or participate in the bidding of another auction drone. This drone
periodically checks if a sufficient number of drones has become available and
continues then with the auctioning of unassigned items as long as this condition
is satisfied.
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Only drones with role dei and role dai but an insufficient number of bidders
can participate in the bidding. We further assume that drones with roles doi and
dci cannot be interrupted by a bidding request.

4.3 Constellation Computation

Fig. 3 sketches a constellation of three drones placed at positions [xi, yi, zi],
separated by baselines bij , and at distance ŷ to the surface. For simplicity, the
covered partition of length Lp is perpendicular to the y axis, and the cameras’
views are perpendicular to the surface. The covered partition Psij ⊆ Sij is
defined by the points pxyz = [x, y, z] which are visible to all k cameras. If we
apply a simple camera model with focal length f , sensor dimensions w × h and
aperture angles αH and αV , the following constraints between any camera pair
i and j must hold:

|x− xi −
bij
2
| ≤ wŷ − bijf

2f
,

y − yi ≥
bijf

w
,

|z − zi| ≤
ŷh

2f
.

(3)

Note that these constraints impose an overlap in the cameras’ FoV of at
least 50%. The partition can be specified by the four corner points of Psij as
[xP , yP , zP ], [xP +LP , yP , zP ], [xP +LP , yP , zP +HP ], [xP , yP , zP +HP ], where
LP and HP represent the width and the height of Psij , respectively.

[x1, y1, z1] [x2, y1, z1] [x3, y1, z1]

LPεL εR

f f f

b12

b13

w w w

b23

b13f
w

x

y

ŷ

Fig. 3: Drone constellation with covered FoV represented in the xy plane. k = 3
drones, positioned at [xi, y1, z1], simultaneously cover the partition of length Lp.
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In our approach, we formulate the constellation computation problem as a
multi-objective optimization problem, having three fitness functions to be min-
imized:

Jco = λde · Jde + λme · Jme − λas · Jas, (4)

where Jde represents the depth error, Jme represents the matching error, and
Jas corresponds to the covered area.

We use a first order Taylor series approximation to estimate the depth er-

ror Jde = ŷ2

bijf
· εd given the distance ŷ, the disparity error εd caused by the

corresponding pixels’ difference in x coordinates, baseline bij , and the focal
length f . The matching error Jme depends on the parameters a and b describing
matching performance and the relative viewing angle γ, and is approximated as
1
a · (e−b|γ| − 1) [18,24].

The third cost function component Jas rewards the additional area covered
beyond the border of the partition Psij . This additional overlap with adjacent
image patches helps to improve the overall stitching of the images from the
individual partitions. Basically, we want to increase both εR and εL in Fig. 3
and therefore subtract it in Eq. 4, as opposed to the other objectives.

With the equal height of the k constellation points, the y and z coordinates
of the drones are given as yi = yP − LP

tan(
αH
2 )

and zi = zP + HP
2 . Note that if

k = 1 only Jas is taken into account aiming for an overlap with neighboring
partitions of at least 50%.

Since constellation computation is an NP-hard multi-objective optimization
problem, we address it with an efficient evolutionary algorithm NSGA-II (non-
dominated sorting genetic algorithm-II), leading to Pareto optimal solutions [7].
This fast, elitist and parameterless algorithm is known for its low computational
complexity with a simple but efficient constraint-handling method and fast non-
dominated sorting procedure resulting in improved convergence. We limit the
number of function evaluations of the algorithm based on the mission’s update
rate.

As previously stated, k controls the required simultaneously captured images
for a surface. Thus, a larger k may provide more data about dynamic textures,
occlusions, etc., which might be beneficial for certain applications. Therefore,
we extend our constellation computation algorithm to be suitable for a larger k.
Fig. 4 depicts two relaxations for the constellation computation for k = 3 drones.
We allow (a) asymmetric drone placements resulting in different baseline settings
and (b) different distances between drones and the covered surface resulting in
different target resolutions.

Since we consider 3D objects in the environment, we have to assure the
coverage of all visible surfaces, including the top ones. We do so by projecting
the top surface of the object as an additional vertical partition to the vertical
surface being covered. However, we are aware of a lower achievable resolution
due to the fact that the far most part of the top surface is further away than
the vertical surface. To assure corner detection in the images, we add another
horizontal partition to the right of each surface.
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(a) (b)

Fig. 4: Different constellation relaxations for k = 3: (a) different baselines, and
(b) different distances to the surface.

4.4 Adaptive Task Assignment

After constellation computation has been completed, drone di changes its role
to dai and starts the assignment of available drones to constellations. We adopt
a decentralized market-based assignment due to its scalability, efficiency, and
suitability for dynamic settings [1]. Optimal assignment algorithms that reach
the global optimum are mostly centralized. Many decentralized multi-agent task
assignment methods employ auctioning mechanisms which have been applied
to NP-hard problems (routing, scheduling, planning, etc.), or address problems
where only partial knowledge about the environment is available, and therefore
local information is exploited. Since our mission is defined in such a way, agents
make decisions based on their current (local) knowledge. Due to the lack of
knowledge, most often the global optimum solution is not found. When, on top
of that, we consider a dynamic environment and only agents’ local knowledge
about it, the resulting assignment quality gets difficult to measure.

We adopt our previous approach [16], where we deployed a basic auction
mechanism enabling drones to bid for constellations and introduced an object-
based (OB) and surface-based (SB) variant. OB allocation assigns all constel-
lation points of an object to the same team of k drones, whereas SB allocation
assigns constellations individually to k drones.

Algorithm 1 describes our new adaptive allocation algorithm which is run-
ning on each drone di with unassigned constellations. As long as drone di has
unassigned allocation items, it is free to explore around and periodically (line 7)
broadcast the request for roles in order to find out the number of drones available
for bidding (lines 8 to 11). If there are at least k drones available, di selects an
object from Oai , computes the constellations of object o and initiates an auction
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Algorithm 1 Market-based Constellation Assignment

Input: set of unassigned objects Oa
i of drone di, set of surfaces Si for oi ∈ Oa

i , auction
Ta and request Tr timeout

1: F a
i ← set of drones free to bid to di

2: Ba
i ← set of drones that bid to di

3: Ca
i ← set of constellation points to assign

4: Sa
i ← subset of Si being assigned to winners in Ba

i

5: ta = 0, tr = Tr ← auction and request timeout counter
6: while Oa

i 6= ∅ do
7: if tr ≥ Tr then
8: di ← dei
9: broadcast role request()

10: tr ← 0

11: F a
i ← update free drones()

12: if |F a
i | ≥ k then

13: di ← dai
14: o← select object(Oa

i )
15: Ca

i ← compute constellations(o)
16: broadcast constellations(Ca

i )
17: if ta < Ta then
18: ta ← ta + 1
19: Ba

i ← update bids()
20: if |Ba

i | ≥ k then
21: Sa

i ← allocate surfaces()
22: broadcast decision(Sa

i )
23: wait for acknowledgment()
24: Oa

i ← Oa
i \ o; tr ← Tr

25: break
26: else
27: di ← dei
28: tr ← Tr; ta ← 0

29: else
30: tr ← tr + 1

31: di ← dei

by broadcasting the constellations of o (lines 14 to 16). It does so as long as
it has not received enough bids (lines 19 and 20) and the timeout ta has not
expired. If a sufficient number of bids has been received, di selects the k drones
from Bai with the highest bid values and broadcasts a decision (lines 21 and 22).

We consider this part to be of importance when adapting to the dynamic
change of roles and the current knowledge drones possess. This knowledge com-
prises a number of drones, their roles and locations, and the shape of the object
and its constellations. Basically, we improve the task decomposition aspect of
the task assignment problem by assigning a number of neighboring surfaces pro-
portionally to the number of bids and their distances to the drones that bid.
This way we parallelize the coverage when multiples of k drones bid. This is im-
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portant because with such a dynamic environment and quick changes, especially
in drones’ movements, proceeding with an assumption made at the moment an
object was ready to be assigned could prolong the mission.

Once the drone di receives an acknowledgment from all allocated drones (line
23), it removes the object from Oai and resets timer tr to be ready to broadcast
role requests again (line 24). If the timeout has exceeded, di keeps exploring
and resets both timers to broadcast role requests again (lines 27 and 28). If all
objects have been assigned, di changes its role to explore (line 31).

To consider the auction successful, drone di waits for the acknowledgments
from all assigned drones. This acknowledgment mechanism also holds for the
bidding drones. If they did not receive an acknowledgment from the drone di
within a predefined timeout Tc, they cancel the bid and start exploring or submit
a bid to another auction.

As stated above, due to the partial environment knowledge, we cannot aim for
the global optimum solution, rather for the optimal solution given the knowledge
a drone auctioneer possesses at the moment it starts the auction. One reason for a
non-optimal outcome could be an unknown obstacle between assigned drones(s)
and constellation points, which results in a prolonged flight time as compared
to the estimated time of the drone bidder.

4.5 Exploration and Object Detection

We apply a simple heuristic for exploring the environment to detect objects
of interest. The drones start exploring from the ground station in a random
direction and move straight until they detect an object, encounter an obstacle,
or reach the border of the environment. In the latter case, they rotate at a
random angle to stay within the environment and continue exploration. For
object and obstacle detection we exploit the drone’s frontal camera. In particular,
we leverage the API of AirSim to retrieve an uncompressed depth image from
the left frontal camera, convert it to a gray-scale image, and remove the ground
to show only the relevant part. We estimate the distance to a potential object
by evaluating the corresponding pixel values and perform further analysis based
on the size of the pixel cluster in the depth image. To investigate the shape
of an object, the drone performs wall following by keeping the distance to the
object fixed while moving around the object. Once wall following has reached
the starting position, i.e. the path around the object has been closed, the drone
ascends to estimate the height of the object.

We adapt the path planning approach [16] by considering online obstacle
detection and avoidance. Whenever an object or obstacle is detected on the
computed path towards a constellation point, we perform a similar wall following
approach for bypassing the obstacle at a safe distance. If the path towards the
constellation point is clear, the drone continues in a straight line.
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5 Experiments

5.1 Experimental Setup

We use the open-source simulator Microsoft AirSim1 (Aerial Informatics and
Robotics Simulation) which is built on the Epic Games’ Unreal Engine 4 (UE4)2

for our simulation study. We created a virtual environment on a 64-bit Windows-
10 platform (cp. Fig. 5), imported it to a Linux platform running Ubuntu 16.04
LTS, and added the AirSim plugin as a replacement for AirSim drone with the
SimpleFlight built-in flight controller. As we aim for a fully decentralized system
and want to deploy our algorithms on real drones, we incorporated the recent
ROS2 version (distribution Bouncy Bolson)3. With this setup the drone agents
are able to exchange messages at an update rate of 1 s which is very important for
real-world missions. ROS2 is supposed to run under Windows. However, in our
64-bit Windows-10 setup, ROS2 showed unreliable performance, in particular,
more than 50% of the messages were lost when running simulations with more
than 4 drones. Therefore, we used the Windows platform only for creating the
environment and the Linux platform for running the experiments and exchanging
messages among the drone agents via ROS2.

Fig. 5: The virtual environment for our simulation study rendered by the Epic
Games Unreal Engine 4.

For our simulation we use an environment of 240 m × 240 m and place
building blocks of different sizes as objects of interest. The ground station is at
the center from where all drones start their mission. The drones are equipped
with cameras, GPS, an Inertial Measurement Unit (IMU), and a barometer.
We perform experiments with varying k ∈ {1, 2, 3} and for the object-based
(OB), surface-based (SB), and adaptive (AD) auction variants. As baseline for

1 https://github.com/Microsoft/AirSim
2 https://www.unrealengine.com
3 https://github.com/ros2/ros2

https://github.com/Microsoft/AirSim
https://www.unrealengine.com
https://github.com/ros2/ros2
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(a) Scenario A (b) Scenario B

δ[ px
m

]

AD 62.53 ± 8.32
OB 50
SB 50
FP 50

(c) Achieved δ

Fig. 6: Average mission time with standard deviations for adaptive auction (AD),
object-based (OB), surface-based (SB), and fixed pair (FP) assignment for sce-
nario A (6a) and scenario B (6b). Achieved pixel resolution δ (6c).

the comparison we also run experiments with fixed teams of k drones (FP), i.e.
offline assigned teams jointly explore the environment and simultaneously cover
the detected surfaces and no dynamic assignment is necessary.

We measure the total mission time and the achieved pixel resolution δ as
key performance metrics. We further measure the object coverage time, which
is defined as the time period when an object has been detected until it is fully
covered, as well as the times the drones operate in the four different roles. We
compare our approach with two different settings: Scenario A is composed of
4, and Scenario B is composed of 6 unevenly distributed building blocks. We
run the experiments with varying number of drones m ∈ {2, 4, 6, 8}. Important
simulation parameters are fixed as follows: The timeout thresholds Tr, Ta and Tc
are set to 3 s, 5 s and 10 s, respectively. We use the following camera parameters:
f = 1662.8 px, αH = 60◦, w × h = 1920× 1080 px (full HD sensor). In order to
give more priority to the mission’s duration over coverage quality, we set λ to 0.7,
whereas we set λas to be equal to 1.5 to ensure 50% of the vertical overlap. Both
minimum distance between drones and a distance to objects are set to 3 m. We
run 10 simulations for each experiment in order to lower the effect of randomness
in exploration. Since we consider the mission to be successfully completed when
the whole area is known and all objects have been covered, we terminate the
experiments when all objects have been completely covered, assuming we know
a priori the number of objects.



Coordination of Mobile Agents for Simultaneous Coverage 13

0

O1

1761.5

O2
O3

184.6

O4

t[s]

objects

(a) m = 2

0

O1
O2
O3

762.7

O4

202.9
t[s]

objects

(b) m = 4

0

O1
O2
O3

659.7

O4

134.3
t[s]

objects

(c) m = 6

0

O1
O2

191.6

O3
O4

643.3
t[s]

objects

(d) m = 8

m time[s]

2 577.5
4 193.25
6 262.67
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(e) Exploration time

Fig. 7: Impact of number of drones m on time each object required to be fully
covered from the moment it was ready to be assigned, and the average explo-
ration time per drone (7e), for the environment setup from Scenario A.

5.2 Experimental Results

Fig. 6 depicts the impact of k and the assignment variant (AD, OB, SB, and
FP) on the overall mission time for both scenarios. It is rather intuitive that the
coverage time increases with k as more drones have to be jointly assigned and
potentially wait for each other at the assigned points. In the AD auction variant,
we aim to take advantage of both the OB and the SB variant, and on top of that,
adapt the coverage quality to mission requirements. As shown in Fig. 6a for k = 1
and k = 2 and in Fig. 6b for k = 1, the SB variant outperforms the OB variant
due to a sufficiently large number of drones m. If the number of objects and
hence unassigned tasks is relatively small as compared to the available drones,
the OB variant outperforms the SB variant, since the auctioneering drones do
not lose time on waiting for bids for each surface. In this case, assignment of
drones for the whole object is more efficient.

Our AD variant outperforms the other variants since it adapts to the mission
and its dynamics of discovering new objects. Furthermore, it achieves a higher
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pixel resolution δ as the fixed one of the other three variants (cp. Fig. 6c).
Regarding a comparison between fixed and dynamic assignment, we analyze
how the FP variant performs with varying k in our scenarios. For k = 1, the FP
variant performs as the OB variant, since the same drone which has detected
the object can also cover it. For k = 2, FP performs only slightly worse than OB
or SB. For k = 3, the performance of FP deteriorates. The main reason for this
degraded performance is that the FP variant explores the environment in fixed
teams of k co-located drones and is therefore less effective in detecting objects
as compared to the exploration with independent drones. Even though the FP
variant’s advantages in terms of shorter coverage time are not evident in the total
mission time, drones did cover some objects faster for certain scenarios because
of the proximity of the other k − 1 drone(s). Moreover, we have introduced two
relaxations for k = 3: different baselines and different distances to the surface.
From the coverage time perspective, the effect of these relaxations is negligible
because the distance variation of a k constellation point for two relaxations is
much smaller than the distances between the constellation points. However, the
coverage quality can benefit from these relaxations, and we therefore applied
both relaxations for our simulations with k = 3, i.e. variable distances at corners
to increase the overlap and variable baselines for regular surfaces.

We further evaluated the scalability of our AD variant by varying m ∈
{2, 4, 6, 8} for scenario A with k = 2. The horizontal bars in Fig. 7 show the
object coverage time for all objects in order to visualize the overall mission exe-
cution and the effect of exploration for different m. The left value on the x axis
represents the time when the first object has been detected, whereas the right
value represents the overall mission time. For m = k = 2, we can clearly observe
the sequential coverage of the four objects (Fig. 7a); the gaps in between corre-
spond to the time required for detection and abstraction of surfaces. Figures 7b
to 7d plot results for m > k, where objects can be covered in parallel. Note that
coverage of a particular object can be interrupted due to too few drones avail-
able. Fig. 7e summarizes the time drones explored the environment searching
for objects. This exploration time does not decrease with increasing number of
drones. It strongly depends on the uncertainty of the environment (i.e. random
object placement) and chosen exploration method.

6 Conclusions

We have presented a decentralized coordination method to simultaneously cover
a priori unknown environments aiming for minimizing the mission duration and
maximizing the coverage quality. The allocation of drones to constellation points
is a critical step for this problem. Our adaptive market-based assignment (AD)
achieved a shorter mission duration as compared to surface-based (SB), object-
based (OB) or fixed assignments (FP) in our simulation study, as well as a higher
coverage quality. Since we apply our approach in initially unknown environments,
the time required for exploration has a significant influence on the overall mission
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time. Thus, there is a tradeoff between exploration and coverage and the effort
put into (concurrently) solving these sub-problems.

Simultaneous coverage represents a challenging multi-agent problem, and effi-
cient solutions will leverage various applications including monitoring, inspection
and reconstruction. As future work we intend to investigate in (i) coordinated
exploration methods to decrease the object detection time, (ii) considering the
object’s semantics to adapt k and δ for each object individually, and (iii) in
deploying our dynamic coordination in real multi-drone applications.
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