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Abstract—In a computational context, self-awareness (SA) is
a capability of an autonomous system to describe the acquired
experience about itself and its surrounding environment with
appropriate models and correlate them incrementally with the
currently perceived situation to expand its knowledge contin-
uously. This paper introduces a bio-inspired framework for
generative and descriptive dynamic models that support SA in
a computational and efficient way. Generative models facilitate
predicting future states, while descriptive models enable the se-
lection of the representation that best fits the current observation.
Our framework is founded on the analysis and extension of
three bio-inspired theories that have studied SA from different
viewpoints, and we demonstrate how probabilistic techniques,
such as Cognitive Dynamic Bayesian Networks and Generalized
filtering paradigms, can learn appropriate models from multi-
dimensional proprioceptive and exteroceptive signals acquired
by the autonomous system. We discuss essential capabilities
for SA and show how our modeling framework supports these
capabilities in theory and by means of a case study where a
mobile robot uses multi-sensorial data to determine its internal
and environmental state as well as distinguishing among normal
and abnormal behaviors.

Index Terms—self-awareness; autobiographical memory; auto-
biographical self; cognitive dynamic systems; Bayesian inference;
anomaly detection; model creation

I. INTRODUCTION

Self-awareness (SA) is a broad concept that describes a
cognitive property of a biological—typical human—agent. At
a rather abstract level, SA can be defined as the capacity to
become the object of one’s own attention, which arises when
an agent focuses not only on the external environment but
also on the internal milieu. The agent becomes a reflective
observer, processing self-information. It becomes aware that
it is awake and actually experiencing specific mental events,
emitting behaviors, and possessing unique characteristics [1].
Another classic SA definition is proposed by Fenigstein et
al. [2], who state that a self-aware agent may focus on
private or public self-aspects. Private self-aspects relate to
externally unobservable events and characteristics such as
emotions, physiological sensations, perceptions, values, goals,
and motives, whereas public self-aspects are visible attributes
such as behavior and physical appearance.
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Over the years, SA has been an object of intensive discus-
sions and studies in different disciplines such as philosophy,
psychology, and cognitive sciences (e.g., [3], [4], [5]). Com-
mon aspects of the proposed approaches lie on the conception
of SA as i) a cognitive embodied process composed of
representational and inferential operations of an agent situated
in an environment, and ii) an agent’s property which emerges
in various forms, including the extent of the SA capabilities
(“levels”) [1], [6] and the scope of the processed information
(“private and public”) [2], [7]. More recently, SA concepts
have been transferred to artificial systems aiming at either
designing intelligent agents or analyzing their behavior. The
driving motivation for the transfer of biological SA concepts
to artificial systems is to improve autonomy, robustness, and
scalability and has been investigated in different fields, includ-
ing software engineering, machine learning, and robotics [8],
[9], [10], [11], [12], [13], [14], [15]. A fundamental challenge
in most of these approaches is how to systematically integrate
SA capabilities into artificial agents.

In this paper, we approach SA from a sensor data and
signal processing perspective. An artificial agent is con-
sidered self-aware if it can dynamically observe itself and
its surrounding environment through different proprioceptive
and exteroceptive sensors and learn and maintain a contex-
tual representation by processing the observed multi-sensorial
data. Proprioceptive sensors measure the internal agent’s pa-
rameters, whereas exteroceptive sensors observe the agent’s
environment (cp. Fig. 1). The SA representation obtained by
jointly and dynamically analyzing the sensory data endows the
agent with introspection at different hierarchical levels. Since
the term introspection allows a quite broad interpretation,
we associate it with the agent’s capability of estimating and
representing dynamical causal relationships from the observed
sensory data. Such representation allows the agent to model
interactions between itself, as observed through proprioceptive
sensors; and the environment, as observed through exterocep-
tive sensors.

The extent of the embodied SA capabilities influences the
agent’s performance when solving tasks and are assumed
as reasons for the significant capability differences of the
various biological species. Accordingly, this paper identifies
the following capabilities as the minimum requirements in
to consider an agent self-aware: initialization, inference,
anomaly detection, model creation and interface with
control. Table I describes the proposed SA capabilities and
provides a relationship between each of them and biological
agents, demonstrating how humans address these capabilities.
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Fig. 1: Concept of a physical architecture for a self-aware autonomous system. The self-aware agent (here conceptually
embedded in a vehicle) observes its surrounding environment with exteroceptive sensors (blue) and its internal state with
proprioceptive sensors (green) and translates its autonomous decisions into actions through the actuators (in red). The SA
core (yellow) is established based on internal representations from the autobiographical memory and the autobiographical self,
together with a set of already learned models. The SA core is able to forecast the next state of the environment and the system
itself, detects anomalies and executes the derived actions.

To the best of our knowledge, these SA capabilities haven’t
yet been sufficiently studied. We, therefore, propose a signal-
driven modeling approach that facilitates SA capabilities.

It is important to note that our bio-inspired modeling
approach aims to improve the autonomy of technical systems
such as robots, IoT devices, or cyber-physical systems. Ini-
tialization, inference, anomaly detection, model creation, and
interface with control are core capabilities of agents operating
in highly dynamic, interactive, and uncertain environments
in order to achieve reasonable autonomy. However, genuine
autonomous systems are required to fulfill a variety of sys-
tem properties, including efficiency (minimizing the resource
consumption), security (protecting against threads), and safety
(operating in conformance with requirements). We do not
address these properties in this paper but refer to other papers
of this issue and related literature (e.g., [22], [23], [24]).
Instead, this paper aims at providing a general bio-inspired

framework to model SA computationally employing Bayesian
representations, probabilistic inferences, and machine learning
techniques. The proposed framework is capable of comparing
current experiences with previous ones. It makes it possible the
learning of descriptive dynamic models that include semantic
(symbolic) and continuous information, enabling them to
interpret multisensory observations contextually. Accordingly,
the proposed SA model represents multisensory experiences
by using a probabilistic structure that jointly describes ob-
servations in a semantic, temporal, and hierarchical way. The
learned models are generative at different levels, in the sense
that errors obtained from such models (differences between
already learned experiences and new ones) allow an agent to
add new models incrementally by describing variations (i.e.,
errors) at different abstraction levels. The proposed framework
can integrate several machine learning techniques (e.g., deep
neural networks and clustering algorithms) to learn contex-
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TABLE I: Definition of self-awareness capabilities and biological relationships.

Self-awareness capability Definition Biological relationship

Initialization

It refers to the initial knowledge from which an agent
starts building its own memories. Such initial

knowledge provides the agent with the essential tools to
interact with its surroundings.

The basic structure of the brain is laid down primarily
during the prenatal period, where its initialization

depends largely on genetics [16].

Memorization
It refers to the agent’s capacity of storing and retaining
information such that it can be recovered and exploited

in the future.

Long-term memories are stored throughout the brain as
groups of neurons that fire together in the same pattern
that created the original experience. Such operation is

done by the process of memory allocation [17].

Inference
It consists of the agent’s ability to make predictions

about its own future states and its surroundings
depending on its current state.

The brain is responsible for anticipating future events.
The predictive coding theory [18] states that at each

level of a cognitive process, the brain generates beliefs
of the information it should be receiving from the level

below it. These beliefs are translated into predictions
about what should be experienced in a given situation.

Anomaly detection

It consists of the agent’s ability to recognize
observations that cannot be explained by its memories.
These observations represent new events that the agent

has not detected so far.

Brain predictions are sent as feedback to low-level
sensory regions of the brain. The brain then compares

its predictions [19] with the actual received sensory
input and “explains” high differences (prediction errors)

between them.

Model creation

It refers to the agent’s capability of generating models
that encode previous experiences, facilitating the

prediction of the agent’s future states and the posterior
comparison with evidence.

The prediction errors that can’t be explained away get
passed up through connections to high levels of
feedforward signals, where they are considered

newsworthy. The internal models get adjusted so that
the predicting error gets suppressed [20].

Decision-making influence
It refers to the ability to generate signals that can be
employed by the agent’s control system such that its

actions are self-monitored dynamically

Muscles move based on commands from the brain [21].
Nerve cells in the spinal cord, called motor neurons,

enable to convey and evaluate the brain’s commands to
the muscles.

tual relationships among multisensorial data and model their
dynamics over time by using a multilevel Bayesian approach.

The remainder of this paper is organized as follows. Sec-
tion II analyses and compares three bio-inspired SA theories.
Section III describes the proposed methodology by which
signal-driven SA models can be generated and incorporated
into artificial agents. Section IV discusses the benefits of
coupled proprioceptive and exteroceptive self-awareness. Sec-
tion V concludes the paper.

II. BIO-INSPIRED SELF-AWARENESS THEORIES

This section discusses three fundamental bio-inspired theo-
ries (proposed by Damasio [25], Haykin [26] and Friston [27])
that have studied SA from diverse viewpoints. We discuss and
analyze the key concepts with a special focus on their SA
capabilities (Table I). In the subsequent sections, we expand
these concepts towards our approach for self-aware artificial
agents.

A. Damasio’s model

Neuroscientists such as Damasio [28] have provided evi-
dence that neural patterns in the oldest parts of the human
brain are organized to process and combine proprioceptive and
exteroceptive sensorial information according to hierarchical
neural layouts culminating into so-called autobiographical

memories (AMs). AMs can constitute a sort of database for
memorizing models of episodes that the agent has learned
from previous experiences [5]. Bio-inspired AMs have already
been investigated towards implementing self-awareness in
artificial agents, for example, in [29]. Based on anatomical
observations, Damasio suggests that episodes in AMs are
represented by a language coding proprioceptive and extero-
ceptive information according to a temporally ordered causal
representation. Fig. 2 depicts the combination of estimations
of the agent’s own the external world’s state obtained by an
early neural layout (named “proto” and “core”, respectively)
in the form of temporal-causal AM patterns.

According to Damasio, AM patterns are based on first-
person situational descriptors that enable human agents to rep-
resent experienced episodes on the basis of a neural vocabulary
(i.e., information units). These descriptors always represent
exteroceptive data as contextualized to information coming
from the agent’s body, and vice versa. Thus, patters encoding
episodic experiences are represented by coupling the agent and
its dynamic interaction with the surrounding environment.

Elementary information units used in AMs define a temporal
representation where an agent and the environment recipro-
cally take on the role of a context. Temporal changes of
the internal representation of the state of one of them (that
Damasio calls “dispositions”) are observed as occurring in the
context of the other one assuming a given state (see Fig. 2).
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Fig. 2: Two elementary information units depicted in the
yellow box correspond to the passive (left) and active (right)
self [29]. The passive self unit stores triplets formed by data
alternatively acquired from proprioceptive and exteroceptive
sensors at different time instants. Proprioceptive data are
acquired at time instant tk−1 and are followed by data from
the environment at time tk captured by exteroceptive sensors.
They cause a change of the internal state of the system at time
tk+1 that is monitored by proprioceptive sensors. Vice-versa,
the active self elementary unit models the cause-effect relation
between the data acquired by exteroceptive and proprioceptive
sensors.

Sequences of such patterns are stored in the AM representing
episodes. Therefore, at least in humans and biological agents,
SA is based on a contextual representation, which is essential
for the emergence of the expected SA capabilities as listed in
Table I.

A dynamic description of agent and environment changes
based on their reciprocal states is a key element for the
representation of SA knowledge. This is different from many
traditional AI systems, where exteroceptive sensory data se-
quences are often represented at a primary level without
explicit contextual information. As a consequence, high-level
processing techniques, for example, classifiers based on super-
vised labeled learning [30], [31], [32], use implicit contextual
information to cluster such data into homogeneous groups.
Despite the impressive classification performance that can be
achieved when testing data and training experiences belong to
the same class, the observing artificial agent cannot reliably
connect such classification results to its internal dynamical
state when performing similar actions to the ones performed
during training, simply because its state was not observed and
memorized together with the observed exteroceptive data. It is
therefore not trivial to use such classifiers as building blocks
for an artificial agent due to the limited adaptability.

Damasio [28] proposed dispositional units, i.e., informa-
tion units representing contextualized state changes of the
agent or the environment, for modeling “cognitive cycles”,
i.e., episodes that can be found as the basis of human self-
awareness. Moreover, he suggests that dispositional units can
be hierarchically organized at different levels in the brain, for
example for describing temporal-causal representations in the
activation and processing results of neuron maps dedicated to
different goals. Consequentially, an AMs should be hierarchi-
cal structured for providing SA models, and thus dispositional
units’ representations should be defined such that they can be

Fig. 3: Hierarchical organization of dispositional units in the
autobiographical memory. According to Damasio [28], these
elementary information units can be found at different levels
in the brain and constitute temporal-causal representations of
cognitive processes. This hierarchy expresses experiences at
different time scales: directly connecting exteroceptive and
proprioceptive data at the leaves and more complex and
structured information corresponding to long terms goals at
higher-level nodes.

organized in multi-level hierarchies (see Fig. 3).
Neuroscience observations show that the parts of the human

brain storing AMs are linked and can exchange neural signals
with other parts of the brain known to be activated within con-
scious inference processes [33]. The role of such neural maps
is to analyze—at different hierarchical levels—proprioceptive
and exteroceptive sensorial data originating from the current
agent’s experiences. The process of recalling and comparing
multi-level AMs with respect to current experiences is an
integral capability of self-awareness related to inference and
anomaly detection, which is defined by Damasio as autobi-
ographical self (AS).

The AS allows an agent to evaluate whether the current ex-
perience matches any episode stored in the AM. Moreover, the
AS must provide inference processes to interface with other
parts of the agent’s brain (e.g., blocks dedicated to agent’s
resource planning and control of actuators) to maintain a
dynamic stability condition, i.e., homeostasis [34]. In a SA
model, the inference capability implies that activated AMs’
dispositional units and currently experienced data elaborated
by early neural maps can be managed by the AS inference
process to perform, for example, predictions on the agent’s
future states. Based on the temporal-causal organization of
the available episodes stored in the AM, the AS is able to
predict future states at multiple abstraction levels by using
generative models that represent possible alternative realiza-
tions of episodes already experienced adapted to currently
observed data. As multiple episodes are stored in the AM,
the AS inference processes need to identify models that better
match the current experience, which requires the dispositional
units’ representation in a SA model to inherently provide a
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discriminative property to assess current data characteristics.
An artificial AS is also required to determine the difference

between episodes contained in its own AMs and the current
experiences based on an appropriate metric, which can be in-
terpreted as the basis for the abnormality detection capability
(see Fig. 4). In order to assess the matching degree between
predictions derived from the dispositional units of the set of
potentially applicable episodes and the current observations,
the SA agent must apply a computable metric invariant to the
sensor modality. In this case, the agent should be aware that an
abnormality, i.e., a non-stationary condition never experienced
before, is currently present. Damasio does not address which
specific computational neural characteristic included in the
neural implementation is able to realize such computational
behavior. He only suggests that such matching and prediction
inference capabilities can be performed by the AS at different
abstraction and temporal levels and so enabling an efficient
selection of the hierarchical and dispositional representation
of AMs episodes).

It is worth mentioning that for natural agents, Damasio
suggests that the integrated SA system composed by AM and
AS can also be used as a possible explanation of higher-level
human regulatory psychological phenomena such as emotions
and feelings [35]. Emotions and feelings can be considered
as emergent results of evaluating current experiences based
on multi-level hierarchical AMs by means of the AS [25].
For example, fear can emerge from the capability of detecting
abnormalities, recognizing that the current experience does not
match with past AMs, or it matches with AMs that describe
dangerous episodes. Damasio’s model implicitly implies that
AS outcomes enable an agent to incrementally update in-
ternal AM models by coding abnormal experiences into new
models as well as to define a SA system that derives inferences
invariant to the involved sensor modalities.

B. Haykin’s model

In comparison with Damasio’s work, Haykin proposes a
computational framework of neuroscience observations from
an engineering perspective referred to as Cognitive Dynamic
Systems (CDS) [36]. The proposed CDS model is based on the
interactions that a Cognitive Controller (CC) part of a CDS has
to maintain at multiple levels of abstractions with a Cognitive
Perceptor (CP). The CP processes exteroceptive information
coming from the environment at different hierarchical levels
and can be seen as a hierarchical probabilistic filter, gener-
ating environment descriptions at different abstraction levels.
Beyond providing information to higher levels, such a filter
generates hierarchical feedback information to the CC, which
in turn computes commands to actuators that are characterized
by uncertainty. The CC block of Haykin’s model is described
as a top-down structure generating outputs towards lower
levels. At the bottom layer, it directly generates outputs for
the actuators.

The Probabilistic Reasoning Machine (PRM), introduced
in a joint paper with J. Fuster [37], organizes probabilistic
information coming from the CP, i.e., percepts and errors
(prediction and update processes), together with information
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Fig. 4: Autobiographical memory (AM) and autobiographical
self (AS) as core components of a self-aware agent founded
on Damasio’s model. The core-self and the proto-self process
exteroceptive and proprioceptive information and store them
as dispositional units in the AM. The AS is able to perform
inference and anomaly detection based on the stored episodes.

coming from the CC, i.e., planned actions with its related
uncertainty. Such an organization is performed over time.
As can be seen in Fig. 5, Haykin’s model does not directly
employ proprioceptive sensory data but uses internal strategies
to generate commands towards actuators.

The main goal of the PRM is to maintain a meta-level rep-
resentation of the perception-action cycle based on switching
and adapting the behavior of CP and CC. As the control strate-
gies embedded in the CP are hypothesized to maintain home-
ostasis, i.e., a dynamic equilibrium between the agent’s state
and the changes in the environment, the PRM is contributing
to the continuous regulation of agents’ processes by providing
switching suggestions to CP and CC. Those suggestions are
implicitly based on the knowledge that an agent must have
been learned from experiences, and it is represented within
the PRM. In this sense, the PRM block is strictly related to
Damasio’s SA model, as it has to process representations of
actions and percepts organized in a temporal-causal order, and
the PRM block can be related to AM and AS as SA model
capabilities.

The PRM elementary representation requires organizing
perception and actions into data structures capturing causal
and temporal interactions between the agent’s actions and
percepts originated from the environment. Dispositional infor-
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Fig. 5: Hierarchically structured probabilistic reasoning ma-
chine (PRM) adopted from [37]. The cognitive perceptor (CP)
processes exteroceptive information (“percepts”) at different
hierarchical levels, and the cognitive controller (CC) generates
outputs towards the actuators in a top-down structure. The
PRM organizes probabilistic information from perception and
control by data structures capturing causal-temporal interac-
tions that are similar to “dispositional units”.

mation units, as described by Damasio, also represent such
interactions but are different because the state of the agent
is directly observed by itself. This can be considered either
as feedback for the SA agent to evaluate the outcome of
commands it has sent to actuators and lower-level blocks or
as a multi-sensor source of proprioceptive signals representing
the agent state to itself. This concept is exploited in our SA
model (depicted in Fig. 10). If this second view is taken,
a modified PRM can be considered as a structure where
appropriately modified dispositional units are processed based
on hierarchical filters that work on proprioceptive feedback
and in a bottom-up way also in the CC.

In Haykin’s approach, the focus is on control instead of SA.
Therefore, the PRM is designed to make a CDS capable of
using interactive behavioral rules to switch among different
perceptions and action modalities adaptively. Such inferences
can drive actions that the agent’s sensors and actuators should
accomplish anticipatorily by activating available models in
the PRM memory when it performs a given experience. This
allows the CDS of an attention capability towards preferred
control or sensing actions in a given homeostatic cycle. In the
case of the SA model discussed here, the agent has no direct
knowledge of the control strategy actions that are generated
by its own decision-making subsystem, but it can observe and
fuse their outcomes through parallel proprioceptive feedback
from sensors coupled with exteroceptive environmental obser-
vations. Haykin’s model, however, suggests how a SA model
can provide useful data to adapt decision making processes
behaviors at homogeneous hierarchical levels to the PRM.
For example, SA can share with decision-making estimates
of present and predicted contextualized states as well as
errors and deviations of models describing previous agent
experiences.

Furthermore, Haykin’s model facilitates identifying tem-
poral variations of uncertainty associated with actions and
percepts, which is a key aspect for addressing a proper
computational framework for the CDS design, i.e., a PRM
in our SA model. Moreover, the organization of a PRM at
multiple abstraction levels is coherent with the hierarchical
characteristics of Damasio’s dispositional units. In this case,
actions and percepts as temporal aggregations (equivalent to
dispositional units) at different hierarchical levels can describe
the joint state of lower-level parts of the agent body down
to the directly observed proprioceptive and exteroreceptive
characteristics of the agent and the environment. Although
Haykin’s approach does not provide a specific probabilis-
tic model for uncertainties and dependencies, it proposes a
Bayesian framework to model uncertainty and causality and
make inferences computationally, e.g., parametric conditional
probability models.

Although the goal of Haykin is not to specify a univocal
PRM model but to provide a generic framework for CDSs, his
model is essential for addressing the main techniques for SA in
artificial agents. His work then suggests that SA models origi-
nating from a computational domain should be associated with
an appropriate calculus of uncertainty propagation. In [38], a
CDS inspired by such a probabilistic approach uses a simple
PRM unit that allows a vision system on a mobile platform to
make inferences about future states. Moreover, Haykin’s work
does not directly provide a unitary view of the techniques
that could be used to store a coherent multi-level generative
and discriminative PRM’s knowledge. Nonetheless, our work
integrates Haykin’s viewpoint on uncertainty and makes a
relation between the perception-control blocks and Damasio’s
theory, which includes AM and AS and dispositional units.
Fig. 10 displays a revisited block scheme of Haykin’s model.

C. Friston’s model

Another relevant cognitive framework for SA that aims at
establishing links between neuroscientific observations and
computational models is the one proposed by Friston [39],
[27]. Here, Bayesian dynamical systems are the computational
tool that facilitates an uncertain and hierarchical self-
coherent representation to describe and generate simulations
of inferences performed by the human brain utilizing neuron
firings. Friston’s approach is innovative in the context of
developing self-aware models for artificial agents due to the
following characteristics: i) It formally relates a statistical me-
chanics’ optimization framework, that can be summarized as
free energy and variational based reasoning, with Bayesian
inference. It founds a theoretical domain for describing SA
knowledge and models (in the AM) as well as inference (in
the AS). ii) It proposes the concept of generalized states (GS)
to develop a class of computational and hierarchical Bayesian
filters that we use to embed representation and inference over
dispositional temporal knowledge.

The good regulator theorem [35] states that “every good
regulator of a system must be a model of that system”. In this
sense, SA models can be considered as joint discriminative
and generative models that contribute to the regulation of an
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artificial agent representing an adaptive code of the system
itself and its incremental experiences at the same time. The
free energy principle represents an optimization criterion that
can be related with a variational computational framework to
both define and discover optimal SA models from a given
set of dynamic experiences, i.e., available data sequences
originating from exteroceptive and proprioceptive sensors.

In [27], Friston suggests that establishing an equivalence
between a probabilistic and a mechanical statistics’ repre-
sentation of the dynamic equilibrium in the sensed internal
state and the contextual environment allows one to explain
the observed neuron firing in the human brain through the free
energy concept. He further shows that Bayesian inference is an
equivalent way to do so. As SA in humans is based on brain
inference processes, probabilistic dynamic representation and
inference models are good candidates to form the language
for expressing a SA model in an artificial agent as well. Such
models must be capable of including temporally ordered de-
scriptions of contextual dependencies between proprioceptive
and exteroceptive variables.

The variational computational representation and inference
techniques he proposes clarify how different models can
describe statistically different sensorial experiences that can
be seen as trajectories in generalized spaces. The models
can also provide explicit measurements to evaluate or to
discriminate best-fitting models of new observed sequences.
At the same time, the same models, that can include mul-
tiple conditionally connected random variables at different
hierarchical and temporal levels, are capable of predicting
multi-level, temporal data series characterized by the same
statistical properties of the training experiences from which
they can be learned (thanks to their generative nature). Such
a model, if used within the SA model of an artificial agent,
together with appropriate learning techniques, can facilitate
incremental model creation. An AS can so actively memorize
incrementally generative and discriminative new models in the
AM by processing sensorial experiences. Such models have to
capture different causality interactions between the agent and
the environment and serve as the basis for symbolic descriptors
in an artificial SA agent.

The SA capability of abnormality detection can also be
explained with Friston’s model, i.e., the free energy that
models generate when the AS compares them to a new
experience. A metric can be defined to evaluate the amount
of abnormality which is related to a particular component
of free energy, describing the orthogonal perturbations to the
dynamic equilibrium condition described by the model. Such
a metric enables the AS to rank the abnormalities measured
from a set of AM models, so relating the discriminative
SA property of the model to the abnormality detection and
inference capabilities.

Contribution ii) to the SA model definition is a specific class
of Bayesian filters, namely GS filters. Friston et al. [40] explain
that thanks to such filters, active and variational Bayesian
inference techniques can be obtained with better performances.
GSs describe a class of trajectories in terms of generalized
coordinates of motion. The resulting model can be shown to
better describe the dynamical nature of the pattern in terms
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Fig. 6: An initial model is employed to predict passive self
states, i.e., glowing green puzzle pieces at instant tk+1|k.
Errors from such a model are utilized to create new models,
depicted as new pages in the AM structure. Such new models
minimize the free energy between the agent’s inferences and
the observed data. Note that the same logic can be applied to
an active self (blue-green-blue puzzle pieces).

of temporal and causal explainability of dependencies among
states as well as computational benefits. In a SA model,
hierarchical Bayesian models derived from GS filters can
provide the description language for the AM, depicted as
individual “pages” in Fig. 6. We will show how these models
can be learned by observing proprioceptive and exteroceptive
data series both independently and in a coupled way that is
oriented to represent their dispositional nature. Such filters can
be used both as generative and discriminative models, and they
can be good candidates to be related to the “good regulator”
code [35], as they can represent the rules that describe the
agent, as well as such rules, can be used by the agent to predict
the dynamic contextualized behavior where it is acting.

Coupled proprioceptive and exteroceptive signals of GS
filters can efficiently represent Damasio’s dispositional units
in a SA model. For example, a Switching Dynamic Bayesian
Network (DBN) [41], [42] uses multi-level discrete and con-
tinuous generalized states as variables that will be further
discussed in the following sections.

Dynamic Expectation Maximization (DEM) filters [40] are
hierarchical parametric GS filters that are here used to
derive coupled GS-DBNs. These filters have been shown to
jointly perform parameter, hyperparameters, and GS estima-
tions within a continuous variable Bayesian network that is
by itself a fully continuous DBN. However, discrete variables
are needed in a SA model too. Such variables are used to
represent different models (i.e., different pages in the AM
structure) and to provide finer level discriminative descriptions
of learned models to determine a different class of probabilistic
dependencies within an episode, useful both for generative
and discriminative purposes. Coupled GS-DBNs are, therefore,
better-suited filters than DEM, in particular when all model
properties are necessary to reach the SA capabilities (see
Fig. 7).

III. SIGNAL REPRESENTATION AND MODEL LEARNING

A. Bio-inspired SA Model

The main difference between Haykin’s and Damasio’s mod-
els is that the objective of the latter lies in the bottom-up
explanation of neuroscientific observations, while the first one
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TABLE II: Comparison of inherent self-awareness properties of the presented bio-inspired self-awareness theories.

Self-awareness properties Damasio’s model Haykin’s model Friston’s model

Generative modeling

Dispositional units are facilitated to
make non-probabilistic predictions
of future agent’s states based on a

top-down approach

Predictions of next actions and
exteroceptive states performed by

the PRM
Predictive GS probabilistic models

Discriminative modeling Not considered Not considered Focused more on filtering than on
semantic labeling of experiences

Interactive
It includes dispositional units but

interactions are not explicitly
explained

PRM relates information between
exteroceptive data and agent’s

actions

Self-organization in agents explained
as system of GS filters related to

agent actions and sensory perceived
environment

Hierarchical modeling
It considers several abstraction

levels ranging from raw
observations to feelings/emotions

Multilevel representation of control,
PRM and perception, see Fig. 5

Continuous variables in upper
inference levels parameterize

predictive models in lower ones

Temporal reasoning Dispositional units relate present
states with future ones

Temporal dependencies between
control and environment perception

during time

In Bayesian DEM filters different
temporal reasoning at abstraction

levels of parameters and GSs

Uncertain reasoning Not considered Bayesian reasoning
Equivalence of active Bayesian

inference and attractors in statistical
mechanics

𝒁𝒌−𝟏
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𝒆
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𝒆

෩𝑺𝒌
𝒆

𝒁𝒌−𝟏
𝒑

෩𝑿𝒌−𝟏
𝒑

෩𝑺𝒌−𝟏
𝒑

𝒁𝒌
𝒑

෩𝑿𝒌
𝒑

෩𝑺𝒌
𝒑

Proprioceptive 
DBN

Exteroceptive
DBN

Fig. 7: Proprioceptive DBN (P-DBN) represented in a green
block and exteroceptive DBN (E-DBN) represented in a
blue block are connected by orange links that encode the
agent’s contextual information. Each DBN (P-DBN and E-
DBN) performs continuous X̃ and discrete S̃ inferences.
This coupling facilitates to model interactions between multi-
sensory data and perform inferences within a contextual SA
framework. Observations are represented as Z, and k encodes
time instances. Proprioceptive and exteroceptive information
is indexed as p and e, respectively.

focuses on the definition of control within a CDS. Similar
to Haykin’s model, Friston’s approach is based on a Bayesian
and computationally efficient approach for SA representations.
Friston’s approach is more focused on a bottom-up joint analy-
sis of proprioceptive and exteroceptive signals, while Haykin’s
model aims at providing a framework for defining compu-
tational aspects of perception-action cycle decision making
outcomes towards actuators in a CDS. A computational SA

Initial 
model

Errors through time

𝒕

Observations through time

AM

𝒕

𝒕

𝒕

Minimum error

Abnormalities

Fig. 8: Models in the agent’s memory produce error mea-
surements as observations arrive. The fittest model is iden-
tified/discriminated and abnormalities (high errors w.r.t a
threshold) are extracted from it. Such high errors are then
used to create new models incrementally as shown in Fig. 6.

model for an artificial agent can be obtained by merging
different aspects of the three frameworks. Such SA model
should include SA properties as discussed in Section I and
enlisted in Table II.

Through section III-A, we describe how the different capa-
bilities can be jointly obtained by using a unique representation
and inference approach. A formalization of this approach will
be discussed in Section III-B, while here, we provide a higher-
level representation of the proposed solution by introducing
candidate representation and inference mechanisms.

Fig. 6 and Fig. 8 depict how the AM can be represented as
a book containing multiple pages. Each page corresponds to
a probabilistic model learned based on observed sequences of
dispositional units during different experiences. Such a model
should be both generative and discriminative. Fig. 6 shows that
an initial reference model serves as a basis for initialization.
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This initial model should represent quite general behavioral
rules obtained in correspondence to a reference experience. For
example, as we will show, it can contain knowledge useful to
predict the agent’s state, even if the environment does not inter-
act with it, and therefore exteroceptive signals do not provide
significant contextual temporal and causal information. In that
case, the expected agent’s state changes are null, except for
random perturbations, and state and its derivatives estimated
from proprioceptive signals can be stationary.

The initial model and all generated models in the AM
must be generative, i.e., they should be capable, under the
effect of a latent null variable, to generate a sequence of
predictions in the form of expected probabilistic properties
of the dispositional unit that could be observed as evidence.
This has to happen as part of the inference process in the AS
module. The AS module must bu capable of comparing the
current set of dispositional units from the current experience
with the predictions of the currently activated AM page. This
comparison has to produce both an evaluation of the mismatch
degree between predicted and observed dispositional units but
also to describe such errors and memorizing them for further
steps. When mismatches are relevant, i.e., abnormalities with
respect to the initial model are too high, the sequences of
dispositional units and related errors (generalized errors) are
processed for describing the new experience. The model cre-
ation phase organizes such data series that can be considered
as sparse acquisitions of generalized errors with respect to
selected AM available models, e.g., by using unsupervised
machine learning tools into new models. The results of the
analysis of the sparse generalized errors are described again
in terms of behavioral rules expressed using generative models
with the same language of the initial models. Such new models
can be seen as new pages to be added to the AM book.
Memorization includes the capability to organize the learned
models within the AM model as incremental pages in a book.
Section II-B describes how this can be obtained starting from
free energy and generalizes state concepts in a way inspired
to Friston’s approach.

Fig. 8 highlights the inference capability of the AS when
the AM is composed of multiple pages, i.e., to discriminatively
select a page that better fits to the current experience. Again,
this can be obtained by comparing the generalized errors ob-
tained by processing in multiple parallel models and evaluating
when the minimum detected error is sufficiently small. The
page which produced such a set of generalized error also
contains the causal and temporal knowledge to predict the
dynamic evolution of the contextual state of the agent and
the environment, so providing to the agent a symbolic and
continuous SA description of what is happening compared
to past experiences. The minimum abnormality criterion to
discriminate the most fitting model can be considered as the
selection of the model characterized by the lowest generalized
error, evaluated by using an appropriate metric. Therefore, the
SA discriminative capability results by comparing the current
experience to the generated predictions of a set of models of
experiences available at a given moment in an agent. Fig. 8
shows how the inference process in the AS can also generate
useful information for decision making. In particular, the
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Fig. 9: Relationships between exteroceptive states (bottom)
and generalized states (top). Two consecutive states are ab-
stracted into a generalized state that has information about i)
the current state (depicted by the shape of the puzzle piece)
and ii) its derivative (depicted by the arrows pointing at the
expected state’s change in the succeeding time instant). Note
that the same logic can be applied to proprioceptive data (green
puzzle pieces).

set of predictions and related errors derived from comparing
activated models with the current dispositional units can be
used by a decision making block to plan resources usage as
well as to decide among alternative actuator signals to perform
planned actions.

Fig. 9 shows that, in contrast to Haykin’s theory, the SA
model does not explain the perception-action cycle, so it
does not include a hierarchical control block. Instead, pro-
prioceptive signals provided by observing agent actuators are
processed in parallel in a bottom-up way with exteroceptive
signals processed in the block defined as Perception in [43]. As
can be seen in Fig. 10, the PRM is replaced by the SA model
as it aims to organize extero and proprio percepts, with the
latter being considered as the feedback generated by actuators
controls by the agent itself.

For the proposed model to be effective, it must fulfill the
properties listed in Table II. In particular, we note that the
content of AM pages represents models organized into random
variables that should come from observations of dispositional
units (i.e., interactive variables embedding causal and temporal
aspects). They are random variables at multiple hierarchical
levels. Moreover, the SA process has to be autopoietic in
the sense that it should be able to learn new pages of the
AM book from computed generalized errors by generating
predictions from pages already available in the AM book. As a
function of generalized errors over the generalized state-space
describes the differences between the current experience and
the existing AM page, this means that a new page generated
during model creation should provide a generalized null error,
i.e., that learning process should be capable of representing a
function of generalized error over the generalized state space
as a book page model.
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PerceptionSA

SA3 CP3PS3

SA2 CP2PS2

SA1 CP1PS1

Proto-self

CC3

CC2

CC1

Control

Agent’s actions Proprioceptive observations

Decision-making signal

Exteroceptive observations

Fig. 10: Proposed SA model based on a PRM with generalized
states and proprioceptive/exteroceptive context. SA models
replace Haykin’s PRM and are able to store and probabilis-
tically model exteroceptive and proprioceptive information
at different abstraction levels. Proprioceptive information is
acquired from internal sensors but also derived from the
control signals of actuators. Orange links between that enter
and exit from the SA blocks represent the interactions shown
in Fig. 7, since the SA block combines information between
proprioceptive and exteroceptive data.

B. Representation and inference in SA model

Based on the capabilities enlisted in Table I, this section
introduces our computational SA model and sketches a formal
description of the SA properties (see Table II for a comparison
of the SA properties of the available bio-inspired models).
The GSs and free energy/variational probabilistic reasoning
schemes provided by [40] are extended towards becoming
capable of representing multiple hierarchical levels and dis-
positional units’ patterns. First, we describe representations
that enable the separation of proprioceptive and exteroceptive
sensory channels in the SA model. Then, we show how the rep-
resentation obtained can be extended to consider interactions
by such channels, so making the SA model able to include
a dynamic coupling between the agent and the contextual
environment. Finally, we discuss the representation patterns
based on temporal dynamic descriptors derived from GSs and
corresponding to probabilistic dispositional units. Table III
summarizes how our model facilitates the SA properties.

1) Generalized states and filters: A GS X̃ represents a pat-
tern that can be written as a vector of dynamical components
including a random state and its derivatives up to a given order
d such that X̃ = [X,X ′,X ′′, · · · ,X(d)]. Following [27], by
assuming ergodic conditions, dynamic models based on GSs
consist of an instantaneous flow f(X̃) that depends on an
initial generalized state such that

X̃
′

= f(X̃) + ω̃. (1)

Perturbations of the flow ω̃ are represented by an additive noise
vector that includes the state and all its derivatives. Under
ergodicity conditions and the variational calculus framework,
it can be shown that the dynamic system defined by the
stochastic Fokker-Planck flow equation will converge to a set

of states according to a differential equation that describes
the temporal dynamics of the probabilities of GSs [44]. The
solution of such an equation can be represented as a probability
density function that defines behavioral rules of the dynamic
system over a generalized state-space p(X̃). Moreover, such
density function can be expressed as an exponential function
of a Lagrangian, i.e., a scalar potential vectorial field defined
over the GSs L(X̃), such that

p(X̃) = e−L(X̃). (2)

Friston et al. [27] observed that the flow can also be
written in terms of the Lagrangian by using the Helmholtz
decomposition

f(X̃) = DX̃︸︷︷︸
Divergence-free

− Γ∇L(X̃)︸ ︷︷ ︸
Curl-free

+ ω̃, (3)

where DX̃ describes a conservative, divergence-free flow
identified in the generalized motion. This term acts as an at-
tractor in the absence of external perturbating forces. Γ∇L(X̃)
is a curl-free component that attracts the solution towards
probable regions of the GSs’ space in a given context.

Friston et al. [27] also show that the generalized motion
can be defined as the temporal changes of the GSs, i.e.,
DX̃ = [X ′,X ′′, · · · ,X(d+1)]. It can be written in terms of
the Lagrangian as Q∇L(X̃), where Q is an antisymmetric
matrix. As is the case with classic Bayesian filters, e.g.,
Kalman or Particle filters, filtering GS models can be described
as an iterated inference procedure composed by prediction and
update steps, where GS’s dynamic and observation models
are used instead of state-based ones. As shown in [40],
the representation of dynamics in terms of generalized co-
ordinates facilitates to describe conditional dynamic models
in a given path depending on mean properties of higher-
order time derivatives included in the GS vector, which is
seen as parameters that describe different conditions along
the experienced path. The mean field of state changes is an
example of such a parameter.

The descriptor of a given experience can be associated with
a time-variant density (to be estimated by the filter based on
GSs) describing transitions among different parametric values.
In [40], online filtering is performed on trajectory data, and
an a priori parametric set of functions is fixed for the dynamic
model.

2) Abnormality detection using GS-filters: GS-filters using
a flow model associated with an attractor, as described by the
generalized motion, can be used in a SA model for abnormality
detection purposes. Each defined attractor is related to a new
agent’s experience, so determining a set of models indexed by
m = 1, . . . ,M . Thus, each model has a flow described as

f(X̃) = DmX̃ + ω̃. (4)

When observing new experiences, it is possible to employ
the flows in Eq. (4) for making predictions about the next
GSs. Differences between such estimations and the evidence
can be interpreted as orthogonal components to the attractor’s
dynamics. In other words, the errors from each filter can be
matched with the residual term, Γm∇Lm(X̃) in Eq. (3), which
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varies for each model m according to the differential tensor
Γm.

Let Z = {Zk; k = 1, . . . ,K} be a series of observations.
Then, the corresponding set of errors with respect to the
predictions (obtained by Eq. (4)) for a model m, can be written
as Θ̃m

Z = {ε̃mk : k = 1, . . . ,K}. Such errors are generalized,
i.e., they consist of a vector that describes the effect of
the observation as changes w.r.t. the predicted state and its
derivatives. Elements in Θm

Z can be directly associated with the
orthogonal curl-free component summed to the perturbation
noise in Eq. (3), such that

ε̃mk = Γm∇Lm(X̃k) + ω̃. (5)

To obtain an abnormality measure that can be compared
through different GS-filters, one can use density functions
of generalized errors. For avoiding using explicit knowledge
of the Lagrangian model to normalize such measurements,
the curl-free term pointing in the direction of higher density
regions can be assumed to be Γm = 0. This assumption
implies that a higher imprecision of the model will be present
in GSs where a curl-free term is necessary to carry back the
model towards the higher density zones. In such zones, the
local generalized error cannot be written only as zero-mean
Gaussian random vector ω̃.

For identifying errors that cannot be represented through a
zero-mean Gaussian random vector, it is necessary to define
a measurement of abnormality that evaluates how much the
observed generalized errors differ from the null mean Gaussian
perturbation term. This is equivalent to compare the matching
of the new observations to the predictions generated by the
model attractor DmX̃ . Accordingly, we propose to measure
the distance between the perturbation’s probability density
p(ω̃) and the GS model-dependent likelihood p(ε̃mk |X̃k) for
measuring abnormalities. In general, such a distance can be
defined as a dissimilarity measurement between two proba-
bility distributions p and q by ∆Π(p, q) (e.g., Bhattacharyya
distance). The abnormality measurement θmk over model m
can also be defined as

θmk = ∆Π(p(ω̃), p(ε̃mk |X̃k)). (6)

In Fig. 8, the distance between the zero-mean Gaussian
perturbation and the generalized error likelihood is represented
by the size of the abnormalities. Eq. (6) can be approximated
by specific probabilistic distance metrics as we will show in
Section IV.

In addition to estimating the abnormality of a model m
when observing an experience through a set of either pro-
prioceptive or exteroceptive observations Z, errors in Θm

Z

can also be used for estimating new models. The principle
is that a new model (m + 1) should integrate abnormali-
ties from the existent model m. Generating a new attractor
D1X̃ = Q∇Lm+1(X̃), which describes a new model m+ 1,
i.e., fm+1(X̃) = Dm+1X̃ + ω̃. Prediction errors from such a
new filter should result to be due only to ω̃, i.e., they should
correspond to zero mean perturbations when applied to the
abnormal experiences detected by the model m.

3) From hierarchical GS-filters to hierarchical SA models:
Friston et al. [27] apply GS-filters in Cognitive Dynamic
Systems analysis showing that they are well suited to be
used for hierarchical representations. In Dynamic Expectation
Maximization (DEM) filters [40], optimal joint estimations of
hidden parameters are presented together with the GSs’ esti-
mation. Parameter φ is used to describe a family of dynamic
models that can be adaptively selected during the inference
process. DEM filters consider a hidden parameter that works as
a random continuous switching variable distinguishing among
an infinite set of dynamic models, such that

f(X̃) = f(X̃, φ), (7)

where φ is the hidden continuous parameter. The joint op-
timization over (X̃, φ) [40] allows one to define an online
inference method that converges through a step-by-step itera-
tive DEM mechanism to a solution that provides an optimal
estimation of the hidden dynamic parameters and GSs through
time.

For a SA model, the agent should be first and foremost
able to discriminate and describe instantaneous deviations
when statistically different episodes are included in the AM.
One can model such episodes by using a finite set of filters
m = 1, . . . ,M , where m is associated with a hidden discrete
parameter. In this sense, by following Eq. (7), one can write
the flow as f(X̃) = f(X̃,m) with m as a discrete parameter.
However, when the dimensionality of the problem allows
it, the agent should be capable of having a symbolic (not
continuous) representation of the experience and segment
experiences at a higher discriminative resolution than the one
of the different episodes in the AM.

For each m, a symbolic description of how the global flow
of an episode can be segmented into a set of flows is desirable.
A natural way for such a description consists of segmenting the
GS’s space X̃ into regions where the attractor can be defined
with sufficient precision. A vocabulary of variables can be
formed by a discrete set of region labels. Accordingly, let s
be a label identifying a GS’s space regions Rs = {X̃s}. Then,
the parametric flow model introduced in Eq. (7) can be further
characterized by using a discrete switching variable s together
with m. Consequently, for each s, a different flow used
within an episode m can be described. However, as a specific
probabilistic sequence of flows can form an episode, it should
be possible to define a flow model at the region’s discrete level.
Such a model consists of the transition probability among
regions, which Hidden Markov models [45], [46], can be
expressed as a set of conditional probabilities among regions
in the vocabulary. To allow such a representation, a GS discrete
variable S̃ = [S,S′ . . . ] is defined. The set of possible
transitions among regions is considered as the equivalent of
the time derivative in continuous variables. Such transitions
have been sometimes defined as events [29]. As models of
different episodes can generate partitions of the GS’s space
into different regions, then the parameters describing episodes
as sequences of flows can be indexed by the couple of discrete
variables (m, S̃m). By using again Eq. (7), each flow of a
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vocabulary can be written as

f(X̃) = f(X̃,m, S̃m). (8)

4) Model creation: A SA model m can so be defined as the
set of flows that make it possible to generate and describe a set
of trajectories. By using Eq. (4), each pair of discrete variables
(m, S̃m) can be seen as a hidden switching variable that
identifies a generalized motion attractor Dm,S̃mX̃ . Therefore,
each model m can be seen as a vocabulary of possible
attractors of a given model m

Vm = {Dm,S̃mX̃,m = 1, . . . ,M, S̃m = 1, . . . , Nm}. (9)

where Nm is the number of flows employed to describe model
m. By using Eq. (6) and Eq. (5), it is possible to approximate
ε̃mk ∼ ω̃. in a region close to the attractor. Then, Eq. (4) can be
used to observe that Dm,S̃mX̃ generates a low abnormality
measurement when a new experience locally fits the episode
flow. As a consequence, p(ε̃mk |X̃k) should be distributed as a
null mean perturbation ω̃. If this does not happen, the model
m does not describe well the sequence of new observations,
and generalized errors can be used to find a new model. To
this end, one can observe that points in GS space closer to the
attractor solution should be characterized by null mean errors.
At those generalized coordinates, the curl-free term should be
almost null, i.e., Γm = 0 as well as should be on average 0 in
regions symmetrically extended wrt. the attractor. A high value
of abnormality so indicates that close to attractors of model m
no experience has been observed before when the abnormality
θmk is significantly high. If this happens for all models m, then
a new model has to be created to describe the new experience.
This new model allows the agent to define a new vocabulary of
attractors whose measured errors can be confused everywhere
in the GS space with a null mean Gaussian perturbation.

The sequence of generalized errors observed with a previ-
ously available model can be used as the input for new model
creation. An experience Z can be written as a contextualized
generalized error set: CΘm

Z = {(ε̃mk , X̃k), : k = 1, . . . ,K}.
Since the contextualized generalized error is different for
each model m, the problem here is to choose a reference
model among the available ones in the AM. We assume the
model with the highest similarity, i.e., the lowest abnormality
distance, is selected. This is depicted in Fig. 8 as the model
producing the smallest error sizes. Using Eq. (6), we can
deduce a new model m′ should minimize the abnormality
computed from the model m over the sequence Z, i.e.,

m′ = arg min
r
θrk = arg min

r
∆Π(p(ω̃), pr(εrk|X̃k)), (10)

where the minimum condition in Eq. (10) can be obtained
when

p(ω̃) = p(εm
′

k |X̃k) = N (0,Σω̃). (11)

Each attractor Dm′,S̃m′ X̃ included in the new model Vm′ to
be learned, has to be associated with a filter whose flow gen-
erates Gaussian null mean perturbations in a region of the GS
space. Using GSs and variational interpretation as in [40], the
solution can be found by considering that an almost constant
value should characterize the mean value of the error in each

region symmetrical around the new attractor. This means that
we require to partition the state space for the new model in
a set of regions X̃ = {

⋃
sRs, s = 1 . . . Nm′} such that in

each region the generalized error should be be associated with
a parameter ψ(s̃) that makes the generalized error distributed
as a null mean perturbation. The contextualized Generalized
Error CΘm

Z and the previous vocabulary of model m can
be used to this end. CΘm

Z includes sparse information as
the errors are available only in GS points observed along
the sequence. A regularizing criterion needs to be defined to
facilitate the clustering of GS regions. For example, in [47],
a functional whose minimization can provide such a criterion,
can prefer a particular partition among the set of possible
divisions P , such a partition is characterized by

{Rs}m
′

= arg min
P

∑
s

Σ(ε̃ms ) + βΣ(Xs)
−1, (12)

where Σ is the covariance operator and Xs are the zero-
time derivatives associated with GSs assigned to region s. The
criterion in Eq. (12) favors a piecewise constant error segmen-
tation of the generalized space and prefers larger connected
regions (so providing a more efficient coding represented by a
lower dimensionality of the vocabulary). β ∈ [0, 1] weights the
importance of larger regions with respect to the compactness
of errors. Unsupervised learning algorithms [48], [49] can
learn optimal or suboptimal partitions for describing the new
model. Following [40], one can observe that Eq. (12) can be
interpreted as a functional similar to free energy. Moreover,
the solution individuates a set of mean generalized error values
for each region s, ε̃

m
s that can be related with parameters in

Eq. (7), by allowing one to write such parameters ψ(s̃) as

ψ(s̃) = ε̃
m
s (X̃), X̃ ∈ Rs. (13)

In this way, the mean generalized error can be related to
the mean field parameter in the example described in [40].
However, in the case of the SA model, a discrete number of
piecewise constant continuous parameters is found to charac-
terize the partition in Eq. (12), whose dimension is equal to
the dimension of the optimal vocabulary necessary to describe
the experience Z. The new learned model Vm′ can be written
as a set of attractors

Dm′,s̃X̃ = Dm′,s̃X̃ + ε̃s(X̃). (14)

The mean generalized error of points in a region Rs

obtained by clustering the generalized error as described above
provides a different (and so state variant) approximation of
the mean field valid in each region s. Such a model generates
lower abnormality distances value when evaluated on the same
sequence. Generalized errors produced by the new model in
zone s should be statistically described by perturbations in
Eq. (11). This also means that the new model can be described
by a set of flows, each one associated with a switching variable
s, describing the new model as a piecewise composition of S
flow models.

Examples of techniques that can be employed to minimize
the above functional include Gaussian Processes [50], [51],
Self Organizing Maps [52], Growing Neural Gas [53] or
Generative Adversarial Networks [54]. It should be noted that
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similar to [29]; the reasoning can be iterated at higher levels
by considering flow models over discrete variables in S. In
this case, flow models describe events that are transitions
between regions that can also be estimated from the sequence
of generalized errors. This allows us to write also S as
a generalized discrete variable, where the derivatives have
to be understood as discrete changes of S labels between
consecutive instants.

5) Generalized state dynamic Bayesian networks: The at-
tractors Dm,S̃mX̃ can be represented as Probabilistic Graph-
ical Models (PGMs) [55], namely in our case as Dynamic
Bayesian networks (DBNs). DBNs are a specific class of
PGMs where temporal dynamics are explicit. It can be shown
[56], [57], [58] that basic Bayesian filters, such as Kalman
filter, Particle filter, and hidden Markov models, can be repre-
sented as two-level DBNs [59]. Adaptive Kalman filters, using
different observation and dynamic models, can be generalized
to switching models representable as DBNS with an additional
level of variables. Markov Jump Particle filters (MPJF) [60],
[61], [62] can be seen as an example for such filters. Similarly,
Rao-Blackwellized filters [63] can be considered as switching
models over alternative non-linear dynamic models [64].

Each random variable in a DBN represents either a general-
ized continuous or discrete state. Observations Z and models
m can be also associated with a node of a DBN. Nodes
can be organized hierarchically within slices, each slice being
associated with variables representing instances at a given
time instant. A particular type of DBNs is two-slice temporal
Bayes nets (2TBN) [65], where two slices related to two
consecutive time instants are used to model a stationary set
of dynamic rules. Probabilistic dependencies among variables
within the same slice are defined as intra-slice (LA) links [66]
that connect the nodes at different DBN levels. LA links are
characterized by conditional probabilities among connected
variables that contain information from which causality among
variable settings can be explained. Dependencies between vari-
ables at consecutive slices (often assuming uniform sampling
of observations through time) are defined as inter-slice (LE)
links. In general, LE links describe flow dependencies among
variables of the same level. Therefore, a DBN whose nodes
J are Jm = {X̃, S̃m,m, } together with a set of LA and LE
links, i.e., DBN = {J, LAm, LEm} characterized by links
LEm can be used to describe a model Vm that is composed
by a set of flow models as in Eq. (9).

The variable m can be seen as a switching variable for the
M models in the AM. Variables S̃m act as switches among
different models Dm,S̃mX̃ , each one associated with a filter
characterized by the relative flow. LAm links are equivalent
to likelihood models at different levels of abstraction within a
DBN slice, while LEm links over nodes of continuous slices
are more directly related to the vocabulary of attractor models.
In Fig. 7 blue and green blocks contain examples of DBNs
that can be used to describe proprioceptive and exteroceptive
generalized states DBNs that we refer to as GS-DBN in
the following. PGMs and also DBNs inherently provide an
equivalence between the graphical representation of a model
and the inference mechanisms that the model uses [67].

Since GS-DBNs represent an equivalent way to describe
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Fig. 11: Definition of generalized dispositional units (DUs)
based on generalized states from proprioceptive and exterocep-
tive information. Inter-slice connections between propriocep-
tive and exteroceptive DBNs model the interactions between
internal and external states of the self-aware agent. The
yellow blocks represent the contextual information obtained by
combining proprioceptive and exteroceptive data at the same
time instant.

a vocabulary for a model m, they can be used as language
for the pages of the AM book in an artificial agent. Pages
can be organized in different ways such as creating new
models (see Eq. (10)) derived from previous models according
to different selection criteria or by considering the order in
which experiences are observed by the agent1. Proprioceptive
GS-DBNs (P-DBNs) and exteroceptive GS-DBNs (E-DBN)
in general do not require synchronous data observations for
learning. However, when P-DBN and E-DBN represent two
vocabularies describing simultaneous observations from differ-
ent sensors obtained along the same experience synchronized
observations might be necessary (cp. Fig. 7).

A GS-DBN obeys the good regulator theorem [68], as
they can intrinsically encode behavior predictions of the
agent and the environment. This happens when AM book
pages are activated and passed to the AS, facilitating SA
properties such as inference and abnormality detection. GS-
DBNs can be considered as generative at two levels: i) Due to
their capability of performing inferences by prediction/update
cycles, Bayesian prediction allows the model to generate a
description of expected realizations of the process before
observing them. ii) New GS-DBNs, i.e., node variables and
links, can be learned by observing inference results obtained
by other already available GS-DBNs. The nodes and the links
of the new GS-DBN’s model m′, can be learned, starting from
a contextualized generalized error set obtained by filtering the
sequence with a GS-DBN at page m. Various methods have
demonstrated the possibility of learning new models based on
criteria derived from Eq. (12) [64], [69], [70], [71]. In the
following, we discuss such examples in some detail.

6) Coupled exteroceptive and proprioceptive GS-DBNs as
Generalized Dispositional Units: P-DBNs and E-DBNs can
provide the properties required by a SA model representa-

1The optimal ordering of AM pages represents an open research issue for
the organization of SA models which is not considered in this paper.
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tion, see Table III. They are based on random variables,
intrinsically associated with uncertainties. Each of their slices
represents hierarchical variables and their dependencies. Inter-
slice dependencies can be associated with temporal proper-
ties, implicitly connected with space-variant characteristics
of attractors. As previously discussed, the models are also
generative and discriminative. However, a SA model must also
represent interactions between the agent and the environment,
and this interaction should reflect the introduced GS-DBN
model and Generalized Dispositional Units (GDU) as depicted
in Fig. 11. By considering the left column as a representation
of generalized states at two consecutive time instants in a P-
DBN and a E-DBN (X̃p and X̃e), then a GDU description
requires that GSs are organized in a standard data structure.
The essence of GDUs is that they should allow the AM
to represent how the agent or the environment GS can be
predicted using the reciprocal entity as a contextual variable.
As the agent and the environment state are described by a P-
DBN and E-DBN, respectively, the GDU representation should
include ways to link variables in the two GS-DBNS.

P-DBNs and E-DBNs should, therefore, not treated as sep-
arate parallel networks; a coupling among variables should be
included. This can be used to represent two different attractors
associated with flows fe(X̃,m, S̃

e
) and fp(X̃,m, S̃

p
), A

coupled GS-DBN model defines (and learns) an additional set
of probabilistic dependencies in the form of a set of links LDm

for each interaction model m, defined here as Dispositional
links. Such links connect nodes of a P-DBN and an E-DBN
as shown in Fig. 12. Nodes in the first slice of a P-DBN and in
the E-DBN models are connected with nodes in the following
slice in either P-DBN or E-DBN. Two subclasses of LD links
can be defined either as active or passive GDUs.

In a coupled PE-DBN, a vocabulary of attractors related to
a given interaction experience can be used to model active
dispositions (i.e., effects of the agent contextualized state
on environmental GS changes) fe(X̃,m, S̃

e
, S̃

p
) and passive

dispositions (i.e., effects of the environment contextualized
state on agent GS changes) fp(X̃,m, S̃

e
, S̃

p
). The dispo-

sitions characterize the probabilistic dependency model of
Dispositional links LD.

Coupled Bayesian networks [72], [73] and DBNs [74], [75]
in general have been used to represent and predict the states
of multisensory data. Fig. 7 sketches the coupling of the
complete SA model for a given model m. Interaction links
among P-DBN and E-DBN are shown as orange inter-DBN
links. However, defining and learning PE-DBNs in SA models
must start from a coupled set of observations covering both
proprioceptive and exteroceptive sensorial data from the same
experience. The abnormality detection and model creation
steps for PE-DBN are similar to what has been described
for separate P-DBN and E-DBN, except for a potentially
higher computational effort. Abnormalities can be represented
via passive and active models in order to describe deviations
in the agent’s and the environment’s behavior, respectively.
In addition, the switching models are defined as a couple
of regions in the P-DBN and E-DBN GSs. Therefore, the
clustering process for learning from generalized contextual
errors derived from a previous model can be more critical if

Fig. 12: Passive (top) and active (bottom) self Generalized
Dispositional Units correspond to nodes and links within two
consecutive slices of a P-DBN and an E-DBN. First layer
nodes represent the context for the flow that generates the
node in the next slice. Passive and active GDUs depend on
either a P (green circle) or an E (blue circle) node.

Stereo 
camera

Internal 
sensors

Fig. 13: Robotic vehicle of our case study used for assessing
proprioceptive and exteroceptive models.

experiences are observed with an insufficient set of samples.
However, the general approach described for separate P and E
modality remains valid. In the following section, we highlight
issues related to coupled GDUs learning with coupled GS-
DBNs by a dedicated case study.

IV. COUPLED PROPRIOCEPTIVE AND EXTEROCEPTIVE
SELF-AWARENESS

As mentioned previously and shown in Fig. 1, a SA agent
can perceive and distinguish two types of sensory information
related to i) its own internal states by proprioceptive sensors
and ii) its surroundings by exteroceptive sensors. Accordingly,
SA in artificial agents is here modeled as a multisensory
problem, where internal and external perceptions are employed
to make inferences of future agent’s states based on models
that are learned incrementally as it faces new experiences.
Section IV-A introduces a case of study consisting of an
artificial agent (vehicle shown in Fig. 13) endowed with
multiple sensors [76].
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TABLE III: Self-awareness properties of proposed model.

Self-awareness properties Realization by our proposed model

Generative modeling

Starting with an initial model, new models incrementally created as new experiences are obtained (see
Fig. 6 and Section III-B 4). The derived models are further able to generate future state predictions at
different abstraction levels using probabilistic inference techniques such as MJPF. Such predictions are

depicted by glow puzzle pieces in Fig. 6 and Fig. 10.

Discriminative modeling
By detecting and using abnormalities, our models can identify the fittest model wrt. current observations,
use it for predictions and eventually create a new model that encodes the detected abnormalities. Fig. 8

depicts model identification and abnormality detection based on the derived error.

Interactive

Synchronization of proprioceptive and exteroceptive sensory information is employed for creating models
that consider the agent’s own internal and external states for embedding the interaction with its

surroundings into the agent’s knowledge. Interactive modeling enables decision-making exploiting
contextual information (compare Fig. 7, Fig. 10 and the proposed coupled models in Section III-B 6)).

Hierarchical modeling

The proposed DBNs are composed of at least two levels of inference: i) a continuous inference based on
GSs (see Fig. 9) obtained from observations and ii) a discrete inference base on discrete variables that

encode certain dynamics in state regions for both exteroceptive and proprioceptive models (see
Section III-B 3). The continuous variables depend on discrete ones, which facilitates a hierarchical Bayesian

representation as shown in Fig. 7.

Temporal reasoning

The proposed generalized DUs enable inferences of the future based on the current contextual information
(see Fig. 11). Additionally, the proposed DBN reasoning implies a description of temporal causalities

between different GSs at different inference levels (see Fig. 12). As DBNs are employed, a slice of random
discrete/continuous variables can be obtained at each time instant.

Uncertain reasoning
The selected Bayesian representation, see Fig. 7, facilitates the inferences of random variables at different

inference levels, see Fig. 3. Such representation of uncertainties enables to define abnormalities in a general
probabilistic as shown Eq. (6).

A. Proprioceptive and exteroceptive models

The proprioceptive model (PM) arises from the necessity of
understanding the proprioceptive stimuli of an agent. Consis-
tently, the PM allows an artificial agent to identify and make
inferences of sensory information related to its actions and
interior states; see blue sensory data in Fig. 1. In other words,
the PM helps agents to understand their personal features and
recognize their capabilities and limitations.

The PM characterizes how an agent behaves in conditions
where the interactions with its surroundings are not considered
explicitly. The PM takes as input a series of proprioceptive
sensory data and creates models that predict its future internal
states based on past experiences. The work in [77] presents an
example of a PM on a set of vehicle’s proprioceptive sensors
consisting of the steering angle (s), consumed power (p) and
rotor’s velocity (v). Such a work proposes a probabilistic
predictive model that describes the internal states of the
vehicle while executing a reference (normal) task in a closed
environment.

The exteroceptive model (EM), on the other hand, is in
charge of explaining and modeling the exteroceptive stimuli
of an agent. The EM facilitates the inference of sensory infor-
mation that measures properties of the agent’s surroundings;
see green sensory data in Fig. 1.

In [78] and [79], it is employed a first-person camera
(exteroceptive sensor) on a vehicle. An EM is utilized to build
models that encode the normal conditions of the surroundings
when the vehicle executes a reference task.

Fig. 14a shows an example of a vehicle’s reference task.

Fig. 14b displays an abnormal experience where the vehicle
changes its regular path due to the presence of a static obstacle.
Fig. 15 shows part of the proprioceptive data (steering angle
and rotor’s velocity) obtained while the vehicle performed
the abnormal scenario, see Fig. 14b. Additionally, Fig. 16
shows the exteroceptive data in case of abnormalities; more
specifically, it shows the consecutive images obtained from the
vehicle’s camera in the case of the avoidance maneuver.

Note that both tasks, shown in Fig. 14, can be considered to
build a PM and EM independently based on the vehicle’s mul-
tisensory data described previously.The PM and EM proposed
in [77] and [78], [79] respectively, are discussed as follows
with respect to the SA’s capabilities described in Table I.

1) Initialization: For the PM, the work in [77] uses a random
walk dynamics as the initial model from which experiences
are coded incrementally. Such an initial model assumes that
the vehicle’s internal control states at a time instant k + 1
will be equal to the ones observed at k except by some low
errors representing minor oscillations around observations at k.
For the EM, the works in [78], [79] consider an initial model
consisting of a constant change in the image’s optical flow,
which is learned based on a training set of images when the
vehicle was following a linear (straight) motion at a constant
velocity. Both models can be written as a dynamic process

X̃k+1 = X̃k +D0,S̃
p
0X̃k + w̃k, (15)

where w̃k is the noise model at instant k. D0,S̃
p
0X̃k represents

the initial flow model (m = 0) employed for predicting the
following states, which summed with the noise corresponds
directly with f0 in Eq. (4). X̃k represents the GS at time k,
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(a) Reference task (b) Abnormal task

Fig. 14: Blue arrows represent the vehicle’s motion for (a) a
reference (normal) task and (b) an abnormal task. The black
borders represent the limits (walls) of the closed environment
and red circles represent static obstacles in the scene.
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Fig. 15: Blue arrows represent trajectory data in terms of
steering angle s in (a) and rotor’s velocity v in (b) for the case
of the abnormal scenario. Avoidance maneuvers are shown for
both cases.

Fig. 16: First person images in case of abnormalities (avoid-
ance maneuver), black arrows indicate the passage from one
image to the next one during time.

which in both cases (PM and EM), takes into consideration
the first time derivative of the input sensory data, such that:

X̃k = [Xk,X
′

k]. (16)

Accordingly, GSs at time k can be written as X̃k =
[sk, pk, vk, ṡk, ṗk, v̇k] for the PM and X̃k = [Fk, Ḟk] for the
EM, where Fk is the first person filtered image at the instant
k and Ḟk its optical flow.

The instantaneous attractor flow introduced in Eq. (1) can
be written as D0,S̃

p
0X̃k ∼ 0 for the random walk dynamics

used in the PM, which implies an absence of motivation. For
the EM, the initial model consists of GAN that codifies image
changes associated with the vehicle’s linear (straight) motions.
In this case, D0,S̃

e
0X̃k cannot be used to generate errors that

can be explicitly associated with the GS represented by the

image and its optical flow, as this is done implicitly in the
Generative network on the high dimensional image space.
However, the model is capable of evaluating abnormalities
from its Adversarial network component, as shown in [80].

2) Memorization: The works in [77] and [78], [79] employ
an onboard computer to store dynamical models that describe
the agent’s internal/external experiences. Such storage is done
incrementally as models are created based on identified new
events. Learned models in the PM consist of linear motion
dynamics valid in clustered regions of the state space. In
EM, learned models consist of vehicle dynamics that produce
homogeneous changes in the images’ optical flow.

3) Inference: At each time instant, PM and EM make
estimations of subsequent GSs by using all available models
through a hierarchical structure similar to the propriocep-
tive/exteroceptive DBNs shown in Fig. 7.More precisely, the
PM’s hierarchical model corresponds to the left part of Fig. 7
(DBN with green background), where the lowest level (Zp)
represents the vehicle’s proprioceptive measurements (s, p
and p). The intermediate inference level (X̃

p
) corresponds to

the PM’s GSs defined previously, whereas the highest level
(S̃

p
) represents zones where linear behaviors of proprioceptive

information were identified.
For EM’s case, its hierarchical model corresponds to the

right part of Fig. 7 (DBN with blue background). The lowest
level (Ze) represents the vehicle’s measured images. The
intermediate level (X̃

e
) corresponds to the EM’s GSs defined

previously and the highest level (S̃
e
) represents regions where

homogeneous changes in the image’s optical flow were iden-
tified.

Accordingly, the generalized motions of learned in PMs
and EMs depend on higher levels of inference (S̃

p
and S̃

e
)

belonging to a certain model m (AM’s book page in Fig. 6)
as shown in Eq. (8). In the PM’s case, future discrete states of
S̃

p
are estimated through a Markov Jump particle filter, where

discrete switching variables and the related attractor facilitate
to make predictions at the continuous GSs level. In the EM, a
set of Generative adversarial networks (GANs) is employed to
predict the next image that the vehicle will face, and generated
errors (mismatches) are employed to infer which future GAN’s
model (S̃

e
) will fit better the observations.

4) Abnormality detection: A measurement of the discrep-
ancy between the models’ predictions and actual observa-
tions is considered for identifying irregular situations, i.e.,
events that the vehicle with its current knowledge cannot
forecast/handle. In the PM, the work in [77] uses the Hellinger
distance [81] between predicted states and observed evi-
dence as a measurement of abnormalities. Accordingly, let
p(X̃

(m)

k |X̃(m)

k−1) be the predicted GSs of a given model m

and p(Zk|X̃
(m)

k ) be the observation evidence at a time k. In
this case, the abnormality measurement can be written as

θmk =
√

1− λmk , (17)

where λk is defined as the Bhattacharyya coefficient [82], such

that λmk =
∫ √

p(X̃
(m)

k |X̃(m)

k−1)p(Zk|X̃
(m)

k ) dX̃
(m)

k .
For EM, the works in [78] and [79] use GAN models to

predict the following agent’s state. Namely, in [78], the ab-
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(a) Abnormality signal derived from the initial models when
evaluated with training data (reference task).
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(b) Abnormality signal derived from the created models
when evaluated with training data (reference task).
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(c) Abnormality signal derived from the created models
when evaluated with testing data (abnormal task).

Fig. 17: Examples of normalized abnormality signals gener-
ated from different learning phases. The threshold for dis-
tinguishing normal and abnormal data is shown as a dotted
line. Since the abnormality measurements θk lies in [0, 1], we
propose to set the threshold at the central value (0.5) of the
interval.

normality measurement from a GAN model m can be written
as θmk = ||Zk − D̂m(Xk)||1, where Zk is the observation at
the instant k and D̂m(Xk−1) is the agent’s state prediction
by the discriminator of the model m given observations until
k − 1.

The abnormalities proposed in both cases, PM and EM,
follow intuitively the general definition proposed in Eq. (6)
where anomalies are defined based on dissimilarities between
the obtained error and a null Gaussian distribution.

As shown in Fig. 14, normal and abnormal tasks are used
to evaluate PM and EM. Accordingly, for both cases, two dif-
ferent phases can be distinguished for detecting abnormalities:
phase I, when the initial model is evaluated on training data
and phase II, when models learned based on training data
are evaluated on training/testing data. Each phase generates
abnormality signals that encode how well the proposed models
explain observations and what kind of information should be
learned by our models in following learning steps.

Abnormalities can be seen as high mismatches (errors) be-
tween predictions and observations (compare red puzzle pieces
in Fig. 6 and Fig. 8). Consistently, abnormalities in phase I lead
to the creation of the first agent’s model, i.e., AM’s created
book page shown in Fig. 6. Accordingly, Fig. 17a shows an
example of abnormality signals generated in phase I, i.e., by

using the model m = 0, while the agent performs a reference
task (Fig. 14a). As can be seen, the initial filters produce
predictions that constantly mismatch with the observations,
generating a series of high abnormality measurements. For
the PM, this corresponds to observations that do not stay equal
during the time, as proposed by the random walk filter. For the
EM, this corresponds to optical flows produced by vehicle’s
curving motions, such that the initial model based on linear
dynamics is not valid.

In phase II, the created model (m = 1) based on the abnor-
malities generated in phase I is employed to make inferences
on already known (reference task) and unseen (abnormal task)
scenarios. Consistently, Fig. 17b and 17c display abnormality
signals generated by the model m = 1 when the vehicle faces
the reference and abnormal tasks, respectively.

5) Model creation: As the vehicle gets experiences, its AM
gets updated based on detected abnormalities from available
models (Fig. 6). For detecting such abnormalities, it is neces-
sary to define a threshold value that distinguishes high abnor-
mality values measured through Eq. (6), see distinguished big
shapes tagged as “abnormalities” in Fig. 6 and dotted lines
(threshold) in Fig. 17. After abnormalities are identified wrt. a
certain model m, they are employed for minimizing the free
energy of the new proposed model.

In the PM, it is proposed to cluster agent’s GSs into groups
(high-level discrete variables S̃

p
) that encode state regions

where their time derivatives are quasi-constant. The result of
the clustering process consists of a vocabulary of discrete
states that define diverse flow models Eq. (9). For obtaining
such a vocabulary, unsupervised clustering algorithms, e.g.,
GNN [83], [84] or SOM [85], [86] can be used. Clustering
algorithms take GSs as inputs and output a set of discrete
values consisting of parametric flow models, see Eq. (8), valid
in specific state-regions. For the PM’s case, information at
each node represents a movement towards a single motivation.
Such flow models generated from the initial one are further
employed for inference purposes and can be written as

X̃k+1 = X̃k +D0,S̃
p
0X̃k + Γ0L0(X̃k) + wk, (18)

where D0,S̃
p
0X̃k represents the initial proposed flow (quasi-

static dynamics) and Γ0L0(X̃k) is the local —abnormal—
error produced by the initial model which in turn corrects the
new model in Eq (18). Since such a new flow model is built
based on the errors produced by the initial one, it is possible
to rewrite Eq. (18) as

X̃k+1 = X̃k + f1,S̃
p

(X̃k), (19)

where f1,S̃
p

(X̃k) ∼ f0(X̃k) + Γ0L0(X̃k), which relates
the new model’s flow with the identified abnormal deviation
Γ0L0(X̃k) produced by the initial model.

In the case of the vehicle’s EM, since images are considered,
the complexity of the input data increases, and different tech-
niques should be employed to process/infer data. Nonetheless,
the model creation in EM follows a similar process to the
one described above for the PM. Accordingly, let Θ0

Z be set
of homogeneous abnormalities wrt. the initial model m = 0
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Fig. 18: Machine learning algorithms are employed to clus-
ter GSs into discrete regions that describe higher levels of
hierarchy encoding discrete concepts inside DBNs. Note that
the process shown here with exteroceptive data can also be
performed for the proprioceptive case.

when observing a set of measurements Z. Such abnormalities
are employed to define a new model m = 1, such that

f1,S̃
e
m(Xk) = GS̃e

m(Θ0
Z) + w̃k, (20)

where GS̃
e
m(·) represents a GAN’s estimation of the GS’s

changes at the time k based on the vocabulary element
S̃

e

m. Accordingly, both learned flow models f1,S̃
p

and f1,S̃
e

are employed to infer future instances of proprioceptive and
exteroceptive data independently.

6) Interface with control: The PM and EM models are
designed in such a way that messages from abnormality signals
can be transferred at each time instant into the artificial agent
such that it can modify its actions and improve its decision-
making at a multilevel way, see Fig. 10. Nonetheless, until
this moment, both models have been treated independently,
and the SA architecture proposed in Fig. 10 that connects
proprioceptive and exteroceptive information is missing.

B. Coupled exteroceptive-proprioceptive model

Coupling of exteroceptive and proprioceptive models arises
from the need to identify causalities/interactions between
multisensory data perceived by an artificial agent. By coupling
the PM and EM, it is possible to build a model that takes into
consideration a contextual viewpoint for making inferences
about future perceived information. Accordingly, here the
context comprises the internal and external perceptions of the
agent at a given time instant k. The main idea is to use such
information to predict the following internal (passive-self) or
external (active-self) states, see Fig. 2. It is worth mentioning
that the considered GSs in both PM and EM facilitate the
creation of GS-DUs, such as shown in Fig. 11, that in turn
enable to make inferences at different levels of abstraction.

For explaining how the aforementioned GS-DUs can be
modeled as a coupled DBN problem, we consider a simulated
situation where an agent moves towards another one that
follows a linear path, as shown in Fig. 19. More specifically,
Fig. 19a shows an example of both agents, namely a follower
agent and a moving attractor. Accordingly, the follower moves
from the scene’s bottom towards the attractor until the meeting
point is reached. Additionally, Fig. 19b depicts an abnormal
scenario caused by introducing an obstacle interfering with the
normal interactive model between both agents.

The proposed scenes in Fig. 19 assume synchronized sen-
sory data from both agents’ locations. Accordingly, the move-
ment of both agents is simulated at each time instant by inter-
acting rules that depend on their positions and motions. Such

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Meeting point

Starting point
(attractor)

Starting point
(follower)

(a) Normal interaction data
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(b) Abnormal interaction data

Fig. 19: Simulated trajectories of interacting agents. The
starting point of the trajectories is represented in blue and
ending points in red. The left graph (a) depicts a normal
behavior between both agents, whereas the left graph (b)
depicts an abnormal initial scenario caused by a static obstacle.
The initial position of the follower is randomly selected inside
the rage [−15, 15] in x and [−20 − 15] in y, whereas the
attractor’s position is initialized at the point (−15, 12).

interacting rules are only employed for simulation purposes
to generate coupled trajectory data. The main idea behind
analyzing such multisensory data is to encode the coupled
agents’ behavior as probabilities into DBN models. Obtained
models are SA due to their capabilities of measure the abnor-
malities and incrementally learn/create new coupled models
(memorized in an agent’s AM), derived from an initial one,
that affect the decision-making of an agent.

From the follower’s perspective, it is possible to consider
its location measurements as proprioceptive data, whereas the
relative position of the attractor represents the exteroceptive
information. Accordingly, the follower’s locations can be
modeled as the left side DBN in Fig. 7, whereas the attractor’s
positions can be represented as the right side DBN. The
modeling of each DBN follows the same reasoning as intro-
duced in Section IV-A. In particular, since low dimensional
data is considered (2D positions), the processing of data for
building a multilevel inference model is similar to the PM’s
case presented previously in Section IV-A.

As described in [87], the problem of modeling both agents
can be done by merging the generated exteroceptive and
proprioceptive vocabularies S̃

p
and S̃

e
into a higher hierarchy

variable D which encodes the statistical representative co-
occurrence of PM and EM vocabularies. Accordingly, D
encodes the context of internal and external data, and it is
employed to make inferences that take into consideration the
coupled states of EM and PM. Fig. 20 shows how the variable
D can be introduced into the DBN structure depicted in Fig. 7.

Similar to Section IV-A, we briefly discuss the realization
of the SA capabilities for the coupled-DBN case.

1) Initialization: Similar to the uncoupled PM, a random
walk model is employed as an initial model from which more
complex motions are learned. Such a simple model is used
for both agents (follower and attractor in Fig. 19), assuming
that both will remain at their positions in the following time
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Fig. 20: A switching DBN for an interactive system. Ar-
rows represent conditional probabilities between the involved
variables. Vertical arrows describe causalities between both
continuous and discrete levels of inference and observed
measurements. Horizontal arrows explain temporal causalities
between hidden variables. In particular, orange arrow encodes
the interaction of couples, i.e., contextual coupled information
of the PM and EM

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Follower
Attractor

Fig. 21: Abnormality signals produced by coupled DBN under
abnormal situation presented in Fig. 19b

instant, i.e., no interaction between them.
2) Memorization: Since a follower’s perspective is taken into

consideration, the created models are incrementally stored in
the follower’s AM so that its predictions and decision-making
can be updated as more experiences are acquired.

3) Inference: Similar to the uncoupled PM, the DBN’s
structure in Fig. 20 is employed to make estimations about
subsequent states. More specifically, a MJPF, consisting of a
bank of KFs coupled with a particle filter, is employed for
prediction purposes, such as explained in [87].

4) Abnormality detection: Since two agents are considered
whose motions depend on the simulated interacting rules, an
abnormality measurement is considered for each agent. Similar
to the PM previously discussed in Section IV-A, abnormalities
are measured for each agent based on the Hellinger distance.

Fig. 21 depicts the evaluation of the first coupled DBN
model learned by looking at the normal experience shown
in Fig. 19a and evaluated in the abnormal scene shown in
Fig. 19b. It can be seen that the initial abnormal measurements
exhibit high values and significantly drop at k ≈ 11. These
high initial abnormalities correspond to a contextual new

experience introduced by the obstacle. Once the follower has
passed the obstacle, the abnormality signals are reduced.

5) Model creation: As more pairs of agents’ positions are
observed and analyzed by the coupled DBN, models that take
into account the joint state of both agents are created and up-
dated by two clustering processes. Accordingly, a first cluster
procedure is performed by considering the positions and the
velocities (GSs) of both agents, prioritizing the velocity of only
one agent. The motivation behind this approach is to identify
similar agent’s reactions (motions) to different contextual
cases. The second clustering takes a similar approach, except
for prioritizing the reactions of the other agent.

Each aforementioned clustering procedure generates a vo-
cabulary that favors the actions of each agent, given its
contextual state. Accordingly, both generated vocabularies are
fused into a dictionary, which in turn represents prediction
models that follow Eq. (3) for each agent. Consistently, each
agent’s model is employed to make inferences about the future
configurations (actions) of the agents.

6) Interface with control: The whole set of variables in the
coupled DBNs, including predictions and abnormalities, can
be used by a control block to allocate resources better. In the
case of the follower-attractor interplay, the follower’s control
could select among different motion strategies by considering
the expectations about where the target will go and prediction
errors. The abnormality signals produced by the coupled DBN
model could be continuously sent to the actuators of both
agents, such that learned normal interactions could be verified
and corrected by both agents at each time instant.

C. Case studies discussion

The above examples show that the development of a SA
model of an artificial agent like an (autonomous) car can be
driven by bio-inspired considerations, as described in previous
sections. The lessons learned so far when considering EM
and PM independently are that the dimensionality of sensorial
data can make it necessary to apply different signal processing
solutions to obtain SA capabilities related to initialization and
model creation. In the case of low dimensionality data, e.g.,
PM presented in section IV-A, initial models can be related
to quite general equilibrium cases (e.g., static assumptions)
while subsequent models can be derived by using unsupervised
clustering processes. The key issue, in this case, is to define
the optimization criteria coherently. For higher dimensionality
cases, e.g., EM presented in section IV-A, the direct identifica-
tion of initial models using a priori designed filters fully is not
possible. However, we suggested that other tools coming from
the Deep Learning evolution of last years can help. GANs
of GSs, e.g., image and optical flow, are an example of a
generative model that can be used to provide an initial model.
In this case, it is needed a preliminary supervised selection
of image sequences that should form the initial model, e.g.,
images when the agent goes in a linear (straight) motion.
Derivation of successive models can be done by embedding
abnormality detection with the Adversarial part of the network.
So solutions are still possible. Many steps in this sense have to
be done by research, e.g., establishing a strong link between
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Bayesian Inference and Deep learning, but ideas start to appear
in this direction [88].

In the last part, we considered a more complete scenario, in
which despite its simplicity due to low dimensionality signals,
we manage to show how coupled PE-DBNs can be related
to the concept of Dispositional Units. The interesting part
here is that the experiment suggests that vocabularies of flows
learned for coupled attractors can require the adaptation of
vocabularies learned with a single modality. As the core of
SA models should rely on such dispositional models, the pos-
sibility to derive coupled representations from individual ones
opens the possibility to start studying optimal representations
in terms of between Bayesian inference and attractors. The
lessons learned cover also other aspects, as the importance
of synchronization techniques and the availability of datasets
coming from different agents to study not only single agent
but also multi-agent cooperative extended SA models.

V. CONCLUSION

Self-awareness is a broad concept describing the property
of a biological or artificial agent that maintains knowledge
of itself and its environment based on proprioceptive and
exteroceptive information. In this paper, we have approached
self-awareness from a sensor and signal processing perspec-
tive and derived a multisensorial model for self-aware au-
tonomous systems. For this endeavor, we identified essential
self-awareness capabilities and analyzed three fundamental
bio-inspired theories. Our SA model is based on generalized
states and free energy and variational reasoning schemes. The
adopted coupled GS-DBN architecture facilitates fundamental
SA properties necessary for computationally efficient realiza-
tions of SA artificial agents. Our mobile robot case study
demonstrates the SA properties achieved in an independent
and coupled modeling approach.

The proposed novel SA framework, comprised of a unique,
hierarchical representation and an inference approach, can
be efficiently integrated into real devices. The presented
bio-inspired probabilistic representation facilitates a semantic
interpretation of multisensorial data in a data-driven way
by using the agents’ signals and well-established techniques
from probabilistic modeling and machine learning. By using
the generative properties of the introduced model, we have
successfully demonstrated the detection of abnormalities in
a mobile robot case study, which opens the possibilities of
testing the proposed framework in more complex scenarios.

As future work, we plan to study in more detail incremental
learning of SA models in a fully unsupervised fashion as
proposed in this paper and analyze the limitations of our
method in terms of scalability. Beside the creation of dis-
tributed awareness in agents’ networks, challenging problems
include the number of involved sensors, the dimensionality of
the provided data and the complexity and number of experi-
ences that can be included in a SA agent [89]. A promising
research direction consists of the integration of more proba-
bilistic oriented deep learning techniques such as variational
autoencoders [90] to describe observation models looking at
high-dimensional data within the proposed Bayesian models.

Additionally, an assessment of the derived models and learned
experiences is necessary according to standards/regulations
concerning safety, security, and resilience.

Despite the achieved encouraging results, self-aware au-
tonomous systems are still at its infancy and substantial further
research is necessary to achieve a sufficient level of self-
awareness capable of handling complex real-world settings.
Without any doubt, human level self-awareness will not be
achievable in artificial agents in the near future, but we
hope research presented in this paper can contribute to initial
computational steps in this direction.
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