
Resilient Self-Calibration in Distributed Visual
Sensor Networks

Jennifer Simonjan∗, Bernhard Dieber†, Bernhard Rinner∗
∗Alpen-Adria-Universität Klagenfurt, Austria, Email: {Jennifer.Simonjan@aau.at}{Bernhard.Rinner@aau.at}

†JOANNEUM RESEARCH, Austria, Email: {Bernhard.Dieber@joanneum.at}

Abstract—Today, camera networks are pervasively used in
smart environments such as intelligent homes, industrial automa-
tion or surveillance. These applications often require cameras to
be aware of their spatial neighbors or even to operate on a
common ground plane. A major concern in the use of sensor
networks in general is their robustness and reliability even in
the presence of attackers.

This paper addresses the challenge of detecting malicious
nodes during the calibration phase of camera networks. Such
a resilient calibration enables robust and reliable localization
results and the elimination of attackers right after the network
deployment. Specifically, we consider the problem of identifying
subverted nodes which manipulate calibration data and can not
be detected by standard cryptographic methods. The experiments
in our network show that our self-calibration algorithm enables
location-unknown cameras to successfully detect malicious nodes
while autonomously calibrating the network.

I. INTRODUCTION

Visual sensor networks (VSNs) consist of spatially dis-
tributed and interconnected smart cameras, which are not only
capable of capturing images, but can also perform process-
ing and communication. They are nowadays widely used in
application areas such as surveillance, smart environments
and industrial automation and have often strong requirements
concerning resilience and reliability [1]. Furthermore, the
majority of these applications require the cameras to be aware
of either their spatial neighbors or the poses of all camera
nodes [2], [3], [4]. Various network calibration algorithms have
thus been introduced in the past years. However, they typically
do not consider adversarial behavior of malicious nodes.

In this paper, we address a security problem which can
not be solved by standard cryptographic methods. The two
reasons for this problem are that 1) cryptography is too
expensive for many embedded and resource-constrained sensor
platforms and 2) subverted nodes that have been successfully
authenticated before and have then been overtaken by attackers
would not be detected. The latter is known as insider attack,
performed by infiltrated nodes to actively disrupt the proper
functioning of the network [5]. In the specific case of camera
network calibration, malicious nodes may inject manipulated
information into the network in order to falsify the calibration
results to make others believe that they are positioned some-
where else, covering a certain area which is not covered in
reality (and vice versa).

To address this problem, we present a fully distributed
method which enables cameras to build up trust to others and
thus to detect malicious nodes throughout the calibration phase

of the network. To do so, cameras rely on a trust model which
incorporates locally evaluated and remotely recommended
trust. We demonstrate its functionality along with our self-
calibration algorithm proposed in [6], [7].

Summarized, our main contribution is a resilient self-
calibration algorithm for VSNs, which is able to detect mali-
cious nodes while autonomously calibrating the network. The
method is not bound to our self-calibration algorithm but can
be used for any state-of-the-art camera network calibration
algorithm. To the best of our knowledge, existing camera
network calibration methods do not take malicious behavior
into account.

The remainder of the paper is organized as follows. Section
II discusses related work and Section III gives an overview
of our VSN self-calibration algorithm. Section IV discusses
the considered attack scenario and Section V introduces our
proposed countermeasure. Evaluation results are presented in
Section VI and Section VII concludes and outlines future
work.

II. RELATED WORK

Sensor network calibration is a key enabling technique for
many applications such as the Internet of Things and has
been extensively studied within the past decades [8], [9], [10],
[11]. Among various calibration solutions for different sensor
network types, signal measurement based calibration is the
most popular approach in wireless sensor networks (WSNs),
while computer vision based calibration is most common in
VSNs. An overview of the state-of-the-art in sensor network
calibration is given in Table I. We categorized the networks
into two major types, namely WSNs and VSNs, and included
information about the resilience of the calibration technique.

Distributed sensor nodes have neither any a-priori knowl-
edge of others, nor can they trust any other node in the
network. Thus, achieving trust and reliability in sensor net-
works is typically a difficult task [12]. Traditional security
solutions such as cryptography do not solve the problem of
eliminating malicious behavior in a distributed network. Thus,
novel solutions have to be developed in order to secure privacy
sensitive networks such as VSNs.

Developing smart VSNs is a multi-disciplinary field re-
lated to computer vision, signal processing, communication,
embedded computing and distributed systems. Most of the
work for VSN calibration originates from the computer vision
community, improving feature detection and matching across



various camera views in order to derive relative poses of the
cameras. One example for a vision-based calibration was in-
troduced by Devarajan et al. [8]. In their distributed algorithm,
cameras detect feature points of the scene and match them with
those of their overlapping neighbors to reason about relative
poses. They also explored the advantages of a decentralized
solution over a centralized one in terms of communication
costs and processing power but did not consider any failures
or adversarial behavior.

Two further vision-based calibration techniques were pre-
sented by Funiak et al. [13] and Ly et al. [14]. In the first
approach, cameras collaboratively track a moving object to
reason about consistent camera poses. Similar to our self-
calibration algorithm proposed in [7], their algorithm provides
pose estimates along with certainties. The second approach
enables self-calibration for heterogeneous camera networks
based on structure from motion. However, none of the ap-
proaches consider node failures or adversarial behavior.

Recently, Guan et al. [9] proposed an approach for VSN
calibration, which is based on analyzing tracks of pedestrians.
The 3D positions of head and foot points of the pedestrians
are detected and used to determine the relative poses of
the cameras. The authors claim that their approach results
in simpler computations and a more flexible and accurate
calibration compared to other methods. This solution is most
similar to ours, also aiming at resource efficiency. However,
failing or malicious nodes are not considered.

Santo et al. [11] presented a device-free, privacy preserving
indoor calibration method using infrared cameras and retro-
reflectors. The cameras capture retro-reflections from markers
attached to walls and can thus detect persons by observing
occlusions of markers. Therefore, persons are tracked while
the camera-marker network is calibrated.

The state-of-the-art in VSN self-calibration showed, that the
algorithms do typically not consider malicious or failing nodes.
Robust calibration algorithms, taking adversaries into account,
are usually proposed by the WSN community. One example
approach, which is based on trust evaluation to overcome
various attacks such as spoofing was introduced by Li et
al. [15]. The trust evaluation is obtained via several calibration
related properties including estimated distance, calibration
performance and position information of beacon nodes.

Two recent approaches were presented by Yuan et al. [16]
and Shi et al. [17]. The first one introduces a distributed
calibration scheme for WSNs, which is based on anchor
nodes and Received Signal Strength (RSS) measurements
and is able to overcome sybil attacks. The second approach
presents a distributed algorithm which detects malicious nodes
throughout the calibration of the network based on geometric
reasoning. The basic idea of this approach is similar to ours,
exploiting plausibility checks for node positions.

Jiang et al. [18] proposed the Efficient Distributed Trust
Model (EDTM) for WSNs. This trust model relies, unlike
many others, not only on communication behavior but also
on energy and data trust and enables to evaluate the trustwor-
thiness of sensor nodes in general.

TABLE I
COMPARISON OF RESILIENT SENSOR NETWORK CALIBRATION METHODS

Reference Objective Method Type Malicious
nodes

Devarajan
et al. [8]

network calibration scene point detection and
matching

VSN not
considered

Funiak
et al. [13]

network calibration collaborative tracking VSN not
considered

Ly
et al. [14]

network calibration structure from motion VSN not
considered

Guan
et al. [9]

network calibration analyzing tracks of pedestri-
ans

VSN not
considered

Santo
et al. [11]

person tracking &
network calibration

capturing retro-reflections
from markers

VSN not
considered

Li
et al. [15]

resilient network
calibration

trust evaluation based on
calibration results

WSN considered

Yuan
et al. [16]

resilient network
calibration

based on anchor nodes and
signal measurements

WSN considered

Shi et
al. [17]

resilient network
calibration

plausibility checks based on
geometric reasoning

WSN considered

Jiang
et al. [18]

distributed
trust model

trust model based on local
and recommended trust

WSN considered

Our
approach

resilient network
calibration

trust model based on local
and recommended trust

VSN considered

Summarized, resilient and reliable calibration algorithms
or trust evaluation models are typically developed for WSNs
rather than VSNs, which led us to take our ideas from WSNs.
However, a majority of them relies on distance estimations
between nodes based on signal measurements and/or anchor
nodes with known positions. Our VSN self-calibration ap-
proach does neither rely on signal measurements nor on
anchor nodes. Further, cameras can typically exploit more
information from their environment than scalar sensors, which
is an advantage for security and reliability purposes.

III. VSN SELF-CALIBRATION

Our distributed and resource-aware self-calibration algo-
rithm for VSNs was introduced in [6], [7]. It is a range-based
localization algorithm, which enables networked cameras to
determine relative poses of all others based on simple geo-
metric computations and multi-lateration. Further, it enables
the cameras to agree on one common coordinate system,
which can then be used for applications running on top. To
calibrate the network, cameras rely on the identification of
shared objects and local distance and angle measurements. The
main advantages of our approach over others are summarized
as follows: 1.) it does not rely on any a-priori topological
information or user-interaction, 2.) it exploits algorithms of
low complexity and reduced communication and 3.) it is
scalable.

A. Self-calibration algorithm

The self-calibration algorithm consists of three parts: 1)
distance-angle estimation, 2) 1-hop neighbor calibration and
3) network-wide calibration. A high-level overview of the self-
calibration procedure is given in Algorithm 1. In the distance-
angle estimation, cameras construct the so-called observation
vector υ, which includes information about locally detected
objects. Observation vectors include local distance d and
angle α measurements to the objects, a timestamp ts and an



object identifier f , and are broadcasted upon construction. The
timestamp and the object identifier enable others to determine
if they have observed the same object at the same time,
while the distance and angle measurements enable them to
geometrically reason about the pose of the camera. Geometric
multi-lateration is exactly what happens in the 1-hop neighbor
calibration, which calibrates cameras with overlapping FOVs
(considered as neighbors) in a pairwise manner. A pairwise
calibration performed by a camera ch to localize another
camera ci results in a localization vector λhi, which includes
the position (xhi,yhi) and the orientation ϕhi of camera ci wrt.
the local coordinate system of camera ch. The localization
vector λhi is used to spread the calibration information through
the network in order to extend the calibration to multi-hop
neighbors (network-wide calibration).

Along with spreading observation and localization vectors,
cameras also elect a leader, whose local coordinate system
is used as common one. This is required, since we do not
assume any access to real-world coordinates but still aim to
establish a single common coordinate system in the network.
Summarized, the self-calibration algorithm generates a single
common coordinate system with the poses of all camera nodes
for connected networks. A detailed description and evaluation
can be found in [6], [7].

Algorithm 1 Overview of the self-calibration algorithm
1. Distance-angle estimation
On object o j is detected at camera ci

broadcast object observation vector υi including local
distance di j, angle αi j, timestamp ts and identifier fi j

2. 1-hop neighbor calibration
On υi is received at camera ch

perform pairwise calibration based on multi-lateration
broadcast localization vector λhi including (xhi,yhi,ϕhi)

3. Network-wide calibration
On λhi is received at camera cg

if the sender ch has already been localized then
perform network-wide calibration
broadcast localization vector λgi including (xgi,ygi,ϕgi)

IV. ATTACK SCENARIO

Since cameras have access to highly sensitive data, VSNs
have usually very high privacy and security concerns, and thus,
malicious nodes and manipulated data need to be detected
already in the calibration phase, right after the network de-
ployment.

Most threat models for sensor networks categorize threats
into two main classes, namely insider and outsider attacks [5],
[19]. Outsider attacks are performed by non-authorized en-
tities. In the case of a wireless sensor network an outsider
may simply eavesdrop or jam the communication. Physical
destruction or displacement of nodes are also considered as

oj

cadvers (true)

cadvers (pretended)

dtrue

dfake manipulating 
measurements

αfake

αtrue

Fig. 1. Data manipulation attack. To manipulate its position, an adversary
cadvers simply pretends to observe objects from a fake distance d f ake and angle
α f ake, rather than from the true ones dtrue and αtrue.

outsider attacks, whereby a sensor network is not able to dis-
tinguish between destroyed nodes or benign nodes that failed
due to low battery, network disconnection or blocked views.
Many outsider attacks such as eavesdropping or spoofing
can easily be addressed using state-of-the-art authentication
and encryption schemes. However, the cases of displaced or
destroyed/failing nodes need to be considered and handled by
calibration algorithms in order to not provide false calibration
results.

Insider attacks enable adversaries to act as legitimate nodes
and thus to actively disrupt the sensor network by manipulating
data. Such an attack may be launched by subverted nodes
(i.e., formally legitimate participants of the sensor network that
have been taken over by an attacker), which already completed
the authentication process successfully. In the specific case
of network calibration, subverted malicious nodes may falsify
data on purpose in order to manipulate the calibration results.
Specifically, they might pretend to be positioned somewhere
else to make others believe that a certain sensitive area (e.g.,
cash machine) is covered, while it is not in reality. Tampering
a pose is typically easy in an autonomous, distributed network
in which sensor nodes can solely rely on local and received
information. Malicious nodes can thus simply pretend to be
located somewhere else by injecting manipulated data into the
network.

In the specific case of our self-calibration, adversaries would
broadcast fake object observation vectors υ. Figure 1 shows the
data manipulation attack, which is achieved by manipulating
the pose of the camera and thus the local distances and
angles included in the object observation vectors. Instead of
broadcasting the true measurements, the adversary broadcasts
tampered measurements d f ake and α f ake, which leads others
to locate the node with a false pose.

V. ROBUST SELF-CALIBRATION ALGORITHM

Adversary detection in a fully distributed and autonomous
network is non-trivial since nodes do not have any previ-
ous knowledge about others and can solely rely on sensed
or received information. To increase the robustness of the



Data-based Trust

Recommended Trust Trustworthiness
of source

+ Trust 
Value

Communication Trust

locally evaluated trust

remotely received trust

Weighting

Weighting

Fig. 2. Trust model diagram adopted from [18].

self-calibration, cameras need to cope with failures and to
detect malicious nodes to eliminate manipulated data. We
will see, that the distributed and flexible nature of our self-
calibration algorithm is able to inherently handle the cases of
displaced and destroyed or failing nodes. For the purpose of
adversary detection, cameras construct and maintain a trust
graph throughout the self-calibration, which includes trust
probabilities to all other nodes.

A. Outsider attacks: destruction and displacement

If an attacker physically destroys a node or if a benign node
fails during the self-calibration process, it won’t be included
in the resulting calibrated network. This merely affects the
rest of the network, if the node was the only connection
between two network regions. Our self-calibration algorithm
is designed in a way, that cameras of connected networks
elect a network leader, whose local coordinate system is used
as common ground plane. If a network is split into two
disconnected regions, the nodes of each region elect their
own network leader, resulting in two ground planes. Thus, the
self-calibration still works, but results in two common ground
planes, one for each network region.

If destruction or failing happens after a successful self-
calibration, other nodes recognize it due to the missing com-
munication. For calibration purposes, cameras exchange object
observation vectors. However, to include topology changes,
cameras keep on broadcasting these vectors also after the
calibration finished. Whenever a camera realizes that there
were no observations received from a neighbor for a certain
amount of time, it requests a Keep Alive message from the
respective camera. If no reply is received, the camera is
marked as Down and all other network nodes are informed
about the failure of the camera. The camera is simply excluded
from the network, which does not affect the common ground
plane or network stability. The mechanism of broadcasting
observation vectors even after a successful calibration also
ensures the detection and re-calibration of displaced nodes.

B. Insider attacks: data manipulation

In order to eliminate malicious nodes, cameras construct
and maintain a trust graph, which defines the likelihood of
being an adversary for all other known nodes in the network.
The trust model used to establish trust graphs is adopted from
Jiang et al. [18] and is shown in Figure 2. Based on this
model, trust graphs are built throughout the self-calibration
procedure. As the model shows, the trust is built upon locally

ch

ci cg
neighbors

neighbors

Fig. 3. Example camera network. Network of three cameras ci, ch and cg,
whereby only camera ci is overlapping with both of the other cameras.

evaluated and remotely received trust. Locally evaluated trust
includes communication and data-based trust and remotely
received trust includes recommended trust. The data-based
trust proposed in [18] relies on the assumption of spatial
correlation between data packets, which means that packets
sent among neighboring nodes are similar. This does not hold
true for visual sensor networks for one major reason: being
directional sensors, cameras may observe scenes from very
different viewpoints even if they are neighbors. Thus, data-
based trust for VSNs needs to be modeled differently. In
order to ease the explanations in the following subsections,
we assume a camera network of three cameras, namely ci, ch
and cg, arranged as shown in Figure 3.

1) Communication trust: Communication trust is evaluated
locally on the camera nodes based on the communication
behavior of another camera, which can be both an overlapping
camera (neighbor) or a non-overlapping camera. If proportion-
ally large numbers of messages or messages with meaningless
content are received from any camera ch at camera ci, the trust
value τih of camera ch is decreased by a value δ.

2) Data-based trust: Data-based trust relies on plausibility
checks based on geometric reasoning and is evaluated by
cameras for neighbors only. An overview of the data-based
trust algorithm is shown in Algorithm 2.

Plausibility checks are triggered by receiving object ob-
servation vectors from neighboring cameras. If a camera ci
receives an observation vector υh j from camera ch for object
o j, it first checks the plausibility of the distance dh j and
angle αh j measurements included in the vector. In case these
measurement values are too small or too large to be plausible,
the trust τih of camera ch is decreased by a value δ. Further,
if a large amount of received observation vectors υh j, ...,υhn
still lead to a non-solvable multi-lateration problem at camera
ci, the neighbor might have sent arbitrary object observations,
and thus its trust value τih is decreased by δ.

Once a neighbor ch was successfully localized, the localiz-
ing camera ci is aware of the claimed pose of the neighbor
and can thus check its plausibility. To do so, camera ci first
evaluates the overlap with camera ch based on the indicator
function shown in Equation 1.

overlap(ci,ch) =

{
1, Fi∩Fh 6= 0
0, otherwise

(1)

where Fi and Fh are the areas covered by the respective camera.
If overlap(ci,ch) = 0, the trust value τih is decreased by δ.



Further, for every detected object o j, camera ci is able
to determine if also neighbor ch can see the object. This
plausibility check is expressed by the following function:

cover(ch,o j) =

{
1, if o j is in the FOV of ch

0, otherwise.
(2)

If cover(ch,o j) = 1, camera ci sends an object request req j
to the neighbor ch. This request simply includes the object
identifier fi j, requesting distance dh j and angle αh j measure-
ments from camera ch to this specific object. If neighbor
ch is not able to provide an appropriate answer including
plausible measurements or an answer at all, its trust value τih is
decreased by δ. If a reply rep j is received, camera ci compares
the received object measurements oh j with the theoretically
calculated measurements oi

h j to determine plausibility. This
plausibility check is indicated by the following function:

equals(oh j,oi
h j) =

{
1, if (dh j,αh j) = (di

h j,α
i
h j)

0, otherwise
(3)

where (dh j,αh j) are the object measurements received from
camera ch and (di

h j,α
i
h j) are the theoretically calculated ones.

If equals(oh j,oi
h j) = 1, the trust value of the neighbor is

increased by δ, otherwise it is decreased.

Algorithm 2 Data-based trust
On υh j from camera ch is received at camera ci

if cover(ci,o j) = 1 then
if (dh j,αh j) is not plausible then

decrease trust value τih by δ

else
localize camera ch through multi-lateration
if non-solvable multi-lateration then

decrease trust value τih by δ

else
if overlap(ci,ch) = 0 then

decrease trust value τih by δ

On object o j is detected at camera ci
if camera ch has already been localized then

if cover(ch,o j) = 1 then
send object request req j to camera ch
theoretically determine (di

h j,α
i
h j)

if rep j from camera ch is received at camera ci then
if equals(oh j,oi

h j) = 1 then
increase trust value τih by δ

else
decrease trust value τih by δ

else
decrease trust value τih by δ

3) Recommended trust: Cameras also take remotely re-
ceived trust values into account if the recommending neighbor
was already proven to be trustworthy. This means, that if a
trustworthy neighbor ci informs a camera cg about a malicious
or a trustworthy third node ch, camera cg will consider this

suggestion. An overview of the recommended trust algorithm
is shown in Algorithm 3.

In general, there are two different cases: Node ch, included
in the trust suggestion, is a neighbor itself of camera cg, or
is non-overlapping and thus a multi-hop neighbor of camera
cg. In the first case, camera cg is also able to evaluate the
data-based trust of camera ch and accumulates it with the
recommended trust from camera ci (see Figure 8). In the
second case, camera cg can accumulate recommended trust
with communication trust only, since it is not overlapping with
camera ch and thus not able to evaluate any data-based trust.

4) Trust determination: Two thresholds tlow and thigh are
used to determine whether a camera is trustworthy or not.
If the trust value τih of camera ch falls below the threshold
tlow, the camera is marked as malicious. If the trust value τih
on the other hand exceeds the threshold thigh, camera ch is
marked as trustworthy. In both cases, camera ci broadcasts
a trust message ϒih to inform all other cameras about the
detected trustworthiness of the camera. Trust values which did
not exceed any of the thresholds indicate that there was no trust
decision made yet, and the node is neither considered to be
malicious nor to be trustworthy. The thresholds tlow and thigh
need to be determined experimentally, however, the smaller
tlow and the larger thigh, the higher the robustness but the longer
the duration to evaluate trustworthiness. Algorithm 4 shows an
overview of the trust determination.

Algorithm 3 Recommended trust
if trust message ϒih from camera ci is received at cg then

if camera ci is trustworthy then
if camera ch is a neighbor of camera cg then

accumulate recommended, communication and data-
based trust to form τgh

else
accumulate recommended and communication trust
to form τgh

else
drop trust message

Algorithm 4 Trust determination
if τih < tlow then

mark camera ch as malicious
broadcast trust message ϒih including trust value τih

else if τih > thigh then
mark camera ch as trustworthy
broadcast trust message ϒih including trust value τih

VI. EVALUATION

This section discusses the evaluation results we achieved in
our experiments. The evaluation in this paper concentrates on
evaluating the robustness of the algorithm, however, the results
imply a working self-calibration. Detailed evaluation results
of the self-calibration algorithm in terms of performance,
accuracy and communication costs can be found in [6], [7].



Laboratory

1

2

5

4

3

Fig. 4. The deployment setup of our network consisting of five smart cameras
and their respective FOVs. Red colored FOVs depict malicious nodes.

A. Camera network

To evaluate our algorithm under realistic conditions, we
deployed it in a camera network consisting of five distributed
smart cameras connected via Ethernet cables. Each camera is
composed of a simple web-camera attached to an Intel NUC1

computer and runs the resilient self-calibration algorithm. As a
middleware, the Robot Operating System2 (ROS) [20] is used,
which is an environment for topic-based publish/subscribe.
ROS thus takes care about distributed messaging without
requiring the senders and receivers to be aware of each other.

B. Evaluation scenario

Figure 4 shows the network setup, including all cameras and
their FOVs, in our laboratory. The triangles depict the FOVs
of the cameras, whereby red colored FOVs indicate malicious
cameras. The network consists of 5 cameras, from which we
manipulated two (camera 4 and 5) to be malicious. Malicious
nodes forge their positions, resulting in fake object observation
vectors, in order to pretend to be located somewhere else.
To generate different fake poses for different adversaries, we
created fake positions (x,y) and orientations φ as follows:

x f ake = xtrue +as · randx (4)

y f ake = ytrue +as · randy (5)

φ f ake = φtrue +as · randφ (6)

where xtrue and ytrue are the true coordinates of the camera,
as is the attack severeness and randx and randy are either
1 or −1 with a probability of 50% each. Thus, x f ake and
y f ake can be positive or negative. Fake camera orientations
φ f ake are generated by adding/subtracting as · randφ to/from
the true orientation. The variable randφ is either 1 or −1, with
a probability of 50% each. Further, we defined the threshold
values for trust decisions as tlow =−5 and thigh = 5, set initial
trust values τ to 0 and in-/decreased trust values by δ = 1.

Since our evaluation aims at assessing the performance
of the malicious node detection, we use synthesized object

1https://www.intel.de/content/www/de/de/products/boards-kits/nuc.html
2http://www.ros.org/

(a) (b)

(c)

Fig. 5. Resilient self-calibration results in form of the common ground planes
which were estimated locally by each camera. The three plots (a), (b) and (c)
show the local estimations of camera 1,2 and 3, respectively, for an attack
severeness of 3. Malicious nodes are depicted by red FOVs and their IDs in
the lower left corner.

detection data in order to exclude potential errors in sensor
measurements from our results. The synthesized data models
twice as many objects as cameras, which moved randomly
through the network, eventually leaving the area of interest.
We deployed the synthesized data together with the algorithm
to each camera.

C. Results

Figure 5 shows the resilient self-calibration results for the
network from the viewpoint of the cameras 1(a), 2(b) and 3(c)
for an attack severeness of 3. This means, the figures depict the
locally estimated ground planes of all benign cameras. First
of all, we can see that the cameras successfully agreed on a
common ground plane, since the local views match each other.
Cameras which were detected to be malicious are depicted
by red FOVs and their IDs in the lower left corner of the
plots. Compared to the ground truth network in Figure 4, we
can see that the networks match except to a global rotation
and translation and that the cameras were able to detect both
adversaries, namely camera 4 and 5, correctly.

Figure 6 shows the assembly of the trust values for the
other nodes in the network from the viewpoint of the benign
cameras 1(a), 2(b) and 3(c). The node IDs are depicted on
the x-axis and the trust values on the y-axis. Blue bars depict
locally evaluated trust and green bars depict remotely received



(a) (b)

(c)

Fig. 6. The assembly of the trust values for the other nodes in the network
from the viewpoint of the benign cameras 1(a), 2(b) and 3(c). Blue bars depict
locally evaluated trust and green bars depict remotely received trust.

trust. As mentioned earlier, a trust decision is made whenever
a trust value reaches a threshold value, thus the maxima of
the bars are ±5. Figure 6(a) shows for example, that camera
1 determined camera 2 and 3 to be trustworthy based on
locally evaluated trust only. Camera 4 and 5 were found to
be malicious, whereby the trust decision of camera 4 mainly
relies on recommended trust. This is due to the fact that there
is only a very small overlap between camera 1 and 4.

Figure 7 shows the average number of correct and false
adversary detections per camera over an increasing attack
severeness from 1 to 8. The influence of the attack severeness
can be seen in Equations 4-6. The blue line depicts the true
number of malicious nodes, the orange line the number of
correctly detected adversaries and the yellow line the number
of falsely detected adversaries. The algorithm ran 10 times per
attack severeness and the results were averaged. As it can be
seen from the plots, cameras were on average able to detect 1.8
adversaries out of 2 and the false detection rate was very low.
Further, the number of correctly detected adversaries increases
with the attack severeness, which is due to the fact that larger
deviations between true and faked positions are easier to detect
through plausibility checks.

Figure 8 shows four snapshots of the trust graph from the lo-
cal viewpoint of camera 1. The snapshots were taken whenever
a camera was localized or found to be trustworthy/malicious.
The locally estimated camera network is depicted in gray.
Depending on the current trust level, the thickness of the lines
to other cameras varies. Thick lines indicate high trust to the
other camera and thin lines indicate low trust. Figure 8(a)
depicts the first snapshot of the trust graph. At this time, none

(a)

Fig. 7. Average number of correct and false adversary detections per camera
over varying attack severeness. The blue line depicts the true number of
malicious nodes, the orange line the number of correctly detected adversaries
and the yellow line the number of falsely detected adversaries.

(a) (b)

(c) (d)

Fig. 8. Four snapshots of the local trust graph state at camera 1. Thick lines
indicate high trust and thin lines indicate low trust.

of the other cameras is considered as trustworthy, since only
two thin lines are connecting cameras 3 and 5. Whenever
new trust values are gathered, the trust graph is updated.
From snapshot 2 in Figure 8(b) we can see that the trust to
camera 3 increased while also the trust evaluation for camera
2 started. Snapshot 3 in Figure 8(c) shows already a final state
of the trust graph, in which cameras 2 and 3 are considered
as trustworthy and cameras 4 and 5 as malicious. This result
matches the ground truth shown in Figure 4.

Regarding the communication effort, we estimated the min-
imum number of additional messages required for building
trust relations as follows:

msgtrust = (thigh · conehop +1)+ cmultihop



where thigh is the upper threshold value for trust decisions,
which we set to 5 in our experiments, conehop is the number
of overlapping neighbors in the network, and cmultihop is the
number of non-overlapping cameras in the network. Cameras
perform plausibility checks, including one message each, for
overlapping neighbors until either the upper threshold thigh
or the lower threshold tlow is exceeded. Upon exceeding the
threshold, a trust decision is made and one message is sent
out to inform others about the trustworthiness of the neighbor.
In the case of non-overlapping cameras, a camera can only
rely on received trust. Whenever a trust decision for a non-
overlapping camera is made, one message is sent out to
broadcast the information further. For our network and a trust
threshold of thigh = 5, we estimated the minimum trust message
count on the benign cameras to be 21.

Using rosbag3, which is a tool for evaluating the commu-
nication in a distributed ROS environment, we recorded all
published messages until camera 1 finished its trust graph
and filtered out the trust related ones. Rosbag recorded 40
plausibility check requests req j, 66 replies rep j and 10 trust
decision messages ϒ. Requests and decisions are only sent out
by benign nodes, whereas answers are provided by all nodes.
The average number of trust related messages sent by benign
cameras was thus

40
3

+
66
5

+
10
3
≈ 30.

This very small overhead would increase only with increasing
number of neighbors, but not with an increasing network.

VII. CONCLUSION

We presented a resilient self-calibration algorithm for cam-
era networks, which enables cameras to estimate the poses of
all other nodes in the network in a distributed, robust and au-
tonomous way. To do so, cameras evaluate the trustworthiness
of all other nodes, which is used to construct and maintain
trust graphs. Trust graphs are built upon our trust model,
which incorporates locally determined and remotely received
trust. We conducted experiments in a network of five cameras
to show the functionality of our algorithm. Future work will
include further security extensions to cover a larger variety of
attacks and an extension of our trust model to enable nodes
considered as malicious to get back into a trustworthy state.
Further, we will show that also attacks at the middleware layer
can be compensated. Therefore, we will exploit the insecure
architecture of ROS [21] to manipulate the network nodes
and evaluate the impacts on the self-calibration. The major
requirement of future sensor networks that operate in public
will be reliability and robustness, in order to also provide
privacy.

ACKNOWLEDGEMENTS

This work is supported by the research initiative ‘Mobile Vision’
with funding from the Austrian Federal Ministry of Science, Research
and Economy and the Austrian Institute of Technology as well as

3http://wiki.ros.org/rosbag

by the Austrian Ministry for Transport, Innovation and Technology
(bmvit) within the project framework CredRoS.

REFERENCES

[1] M. Reisslein, B. Rinner, and A. Roy-Chowdhury, “Smart camera net-
works [guest editors],” Computer, no. 5, pp. 23–25, 2014.

[2] J. C. SanMiguel and A. Cavallaro, “Cost-aware coalitions for collabo-
rative tracking in resource-constrained camera networks,” IEEE Sensors
Journal, vol. 15, no. 5, pp. 2657–2668, 2015.

[3] J. Simonjan, M. Schranz, and B. Rinner, “Self-calibration and coop-
erative state estimation in a resource-aware visual sensor network,”
in Proceedings of the International Conference on Distributed Smart
Cameras. ACM, 2017.

[4] A. T. Kamal, J. H. Bappy, J. A. Farrell, and A. K. Roy-Chowdhury,
“Distributed multi-target tracking and data association in vision net-
works,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 38, no. 7, pp. 1397–1410, 2016.

[5] E. Shi and A. Perrig, “Designing secure sensor networks,” IEEE Wireless
Communications, vol. 11, no. 6, pp. 38–43, 2004.

[6] J. Simonjan and B. Rinner, “Decentralized and resource-efficient self-
calibration of visual sensor networks,” Ad Hoc Networks, vol. 88, pp.
112–128, 2019.

[7] ——, “Distributed visual sensor network calibration based on joint
object detections,” in Proceedings of the 13th International Conference
on Distributed Computing in Sensor Systems, June 2017, pp. 109–116.

[8] D. Devarajan, R. J. Radke, and H. Chung, “Distributed metric calibration
of ad hoc camera networks,” ACM Transactions on Sensor Networks,
vol. 2, no. 3, pp. 380–403, 2006.

[9] J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips, “Extrinsic calibration of
camera networks based on pedestrians,” Sensors, vol. 16, no. 5, p. 654,
2016.

[10] S.-Z. Wang, Y. Li, and W. Cheng, “Distributed classification of localiza-
tion attacks in sensor networks using exchange-based feature extraction
and classifier,” Journal of Sensors, vol. 2016, 2016.

[11] H. Santo, T. Maekawa, and Y. Matsushita, “Device-free and privacy
preserving indoor positioning using infrared retro-reflection imaging,”
in Proceedings of the IEEE International Conference on Pervasive
Computing and Communications (PerCom). IEEE, 2017, pp. 141–152.

[12] L. Chen, S. Thombre, K. Jarvinen, E. S. Lohan, A. Alen-Savikko,
H. Leppakoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N. Ferrara,
S. Honkala et al., “Robustness, security and privacy in location-based
services for future iot: A survey,” IEEE Access, vol. 5, pp. 8956–8977,
2017.

[13] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed local-
ization of networked cameras,” in Proceedings of the 5th International
Conference on Information Processing in Sensor Networks. ACM,
2006, pp. 34–42.

[14] D. S. Ly, C. Demonceaux, P. Vasseur, and C. Pégard, “Extrinsic
calibration of heterogeneous cameras by line images,” Machine Vision
and Applications, vol. 25, no. 6, pp. 1601–1614, 2014.

[15] P. Li, X. Yu, H. Xu, J. Qian, L. Dong, and H. Nie, “Research on secure
localization model based on trust valuation in wireless sensor networks,”
Security and Communication Networks, vol. 2017, 2017.

[16] Y. Yuan, L. Huo, Z. Wang, and D. Hogrefe, “Secure apit localization
scheme against sybil attacks in distributed wireless sensor networks,”
IEEE Access, vol. 6, pp. 27 629–27 636, 2018.

[17] W. Shi, M. Barbeau, J.-P. Corriveau, J. Garcia-Alfaro, and M. Yao,
“Secure localization in the presence of colluders in wsns,” Sensors,
vol. 17, no. 8, p. 1892, 2017.

[18] J. Jiang, G. Han, F. Wang, L. Shu, and M. Guizani, “An efficient
distributed trust model for wireless sensor networks,” IEEE Transactions
on Parallel & Distributed Systems, vol. 26, no. 5, pp. 1228 – 1237, 2015.

[19] A. A. Cardenas, T. Roosta, and S. Sastry, “Rethinking security prop-
erties, threat models, and the design space in sensor networks: A case
study in scada systems,” Ad Hoc Networks, vol. 7, no. 8, pp. 1434–1447,
2009.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.

[21] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner,
“Security for the robot operating system,” Robotics and Autonomous
Systems, vol. 98, pp. 192 – 203, 2017.


