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Abstract— In human-robot collaborative scenarios human
workers operate alongside and with robots to jointly perform
allocated tasks within a shared work environment. One of
the basic requirements in these scenarios is to ensure safety.
This can be significantly improved when the robot is able to
predict and prevent potential hazards, like imminent collisions.
In this paper, we apply a recurrent neural network (RNN) to
model and learn human joint positions and movements in order
to predict their future trajectories. Existing human motion
prediction techniques have been explored in a pseudo scenario
to predict human motions during task execution. Building
upon previous work, we examined their applicability to our
own recorded dataset, representing a more industrial-oriented
scenario. We used one second of motion data to predict one
second ahead. For better performance we modified the existing
architecture by introducing a different output-layer, as opposed
to common structures in recurrent neuronal networks. Finally,
we evaluated the artificial neuronal network performance by
providing absolute positional errors. Using our method we were
able to predict joint motion over a one second period with less
than 10 cm mean error.

I. INTRODUCTION

Robots are widely used in different fields due to their
precision, reliability, strength, and speed. Initially, in indus-
trial applications, robots operated separated from humans in
isolated areas. With advances in technology and the necessity
for coexistence of robots and humans (e.g., medical appli-
cation, service robots, collaborative production lines), a new
era of human-robot interaction has emerged. Human-robot
collaboration is one of the key aspects of future industrial
manufacturing. When humans work closely with robots, the
safety of the human becomes an important issue [19].

No matter how accurate and safe a system is designed,
continuous monitoring is still required to ensure safety
in collaborative scenarios. Naturally, perception plays an
important role, identifying hazardous scenarios by using
various types of advanced sensors. For instance, robot-
integral force and torque sensors are used to detect collisions
in order to immediately stop the robot. In addition, tactile
and touch sensors can be used to detect collision areas, to
further improve a robot’s reactive capability. Quite recent
research showed how proximity sensors even can detect an
approaching object at closer ranges and prevent a collision
in advance [16], [18]. Similarly, many other sensors such
as conventional cameras, RGB-D cameras, time-of-flight
cameras, and laser scanners can be used to monitor the
environment allowing for prevention of hazardous situations.
However, performing sensory data acquisition, analysis, and
fusion is a computationally expensive task. Therefore, in
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presence of fast robot and human motions, the robot may still
need extra time for a reliable perception of the environment.
By predicting human and robot motions in advance, the
robot can foresee hazardous situations and adjust the robot
movement trajectory or speed according to safety standards
[8].

Advances in machine learning and deep neural networks
brought new forms of scene understanding. Miseikis et al.
[14], [15] showed how to find a robot and localize its 3D
joint positions using a single image applying a convolutional
neural network. With an increasing number of available
datasets containing a variety of human motions [7], the
momentum of applying machine learning to human motion
related tasks increases. For instance it is possible to extract
the 2D joint positions of multiple humans from an image
or video in a timely manner [1]. By using recurrent neural
network topology, [13] showed that a short term human
motion prediction is possible based on observed human mo-
tion patterns. Even more recent findings [3] show smoothly
synthesized long-term motion and short-term prediction of
human motion. As shown by [4], accurate motion predictions
have been accomplished by using action-specific motion
patterns to train a time-series-aware neural network to predict
human motion.

These methods build the foundation to incorporate motion
prediction in robotic systems and enable them to plan their
own movement ahead of time and avoid risky situations such
as collisions with other humans or robots in collaborative
scenarios. In this paper, we investigate if existing human
motion prediction, using a RNN, is in principal applicable to
collaborative human-robot scenarios. The goal is to evaluate
the prediction accuracy of human joint motion for up to
one second. To achieve this we adapted an existing RNN
topology and evaluated the performance on our dataset
representing a simple industrial assembly task.

II. RELATED WORK

Here we provide an overview of the most relevant litera-
ture. Our work builds upon prior research on human-robot
collaboration and human-motion modelling using artificial
neural networks.
Human-robot collaboration - Previous works in the field of
safe robot operation in conjunction with human interaction
e.g. [5], [10], have led the consideration and characterization
of safety requirements. Safety is considered as the most
important design criterion in drafting a new robotic system or
implementing an industrial robot in a manufacturing process.
Furthermore, it is desired to account for more convenient
robot interaction with humans and more efficient operation.
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Fig. 1. Proposed architecture with extended back projection layer (green box). Green skeletons represent the input sequence and blue skeletons represent
the predicted output. The dotted line show the residual connection added to the final pose output.

Similar related work has been published by [11], [12] who
propose human motion prediction methods for human-robot
collaborative tasks. Being able to foresee human motion in
a short time span, prior information can be used to avoid
hazardous situations up front.
Liu and Wang [11] intended to model a product assembly
operation as a sequence of tasks. Decomposing an assembly
operation in different tasks with specific motion patterns
allowed them to map their assembly problem to a Hidden
Markov Model. Hidden Markov Models are well suited for
discrete sequence models. They showed the feasibility of ap-
plying a Markov Chain to human motion on a task level view
to predict the next likely task. Lacking detailed positional
joint information in their approach, [12] proposed a frame-
work that allows robots and humans to operate safely in close
proximity. Using the Gaussian Mixture Model representation
of human motion they where able to predict the upcoming
work space occupancy for a certain time span. Applying the
existing trajectory optimization methods, they showed the
practicability using a work space occupancy map to compute
collision free trajectories. Providing a framework to offer
real time motion recognition and prediction they assessed
the frameworks capabilities by conducting experiments to
measure the human interference during task execution.
Human motion modeling using artificial neural networks
- Application of artificial neural network in human motion
modeling and estimation has grown drastically with the
introduction of datasets containing annotated human motion
and pose samples [7]. Commonly used by [2], [3], [4], [13],
they all focused on the task of human motion prediction
and long-term synthesis. By pursuing the achievements in
human motion prediction using Deep RNN, [13] introduced
simple and scalable RNN architecture. Using a single Gated
Recurrent Unit (GRU) rather than concatenated Long Term
Short Memory cells [3] they showed that the much simpler
architecture is capable of achieving similar performance.

Simplifying the architecture increases performance and al-
lows faster training. Applying ideas from [6] they where able
to improve first frame discontinuities significantly. Rather
than modeling human poses and motion, they added a
residual connection to the architecture which forced it to
model joint velocities instead. Gui et al. [4] showed, most
recent improvements in the area of human motion modelling
and prediction. They used a similar approach as [13], but in-
troduced a global discriminator which examine the quality of
the prediction. Inspired by Generative Adversarial Networks
(GAN) they adapted this concept to the motion prediction
domain and resulted in a motion GAN. GANs have shown
great progress in sequence generation problems since the pre-
dicted sequence is judged from a global perspective. Jointly
optimizing the discriminator together with the predictor, the
predictor’s performance is not only measured by the loss
function, but further the predicted sequence is rated quality-
wise from a global perspective.
Although state of the art showed promising results by apply-
ing RNNs in the field of human motion prediction, RNNs
have not been extensively exploited in the field of human-
robot collaboration. Due to the lack of available datasets
containing actions similar to assembly tasks in an industrial
environment, we conducted experiments using our own data
samples.

III. METHOD

Recent work in human pose prediction mainly focuses
on casual tasks, e.g walking, discussions, eating and etc.
It showed promising results for motion prediction in a
short-term manner and qualitative smooth motion synthesis
in a long-term scenario. However, for the distinct scenario
of motion prediction in an industrial environment, we did
not find publicly available datasets which can be used
for human-robot collaboration. Further more, we saw the
potential to improve predictions on our own dataset by
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using a more complex back projection layer in the network
architecture.

Our approach - As Figure 1 shows, we apply a similar
structure as [13], who based their proposed method on
the advantage of modelling velocities in the RNN [6].
We focused on the importance of high accuracy in the
first frames to accommodate for continuous prediction.
Applying a RNN in a sequence prediction task requires
the output to have the same dimensionality as the input.
This means in our case the input is given by a sequence
of observed body poses in the joint angle domain (green
skeletons) and the output is a continued sequence of the
input (blue skeletons). The input size represents the number
of joint angles we consider for reconstruction of the body
skeleton, see Figure 3. The output size is dependent on
the number of units in the GRU. Using a higher number
of internal units allow to extract more features from the
input, although it mismatches the desired output-size, e.g.
using 1024 outputs instead of 15 output angles. To apply
RNN to sequence prediction problems, the output size
is projected from the GRUs output units to the original
dimensionality. Commonly this is done by a linear layer
which back-projects frame by frame. Temporal information
is only contained in the RNN and the linear back-projection
is only used for size adaptation. We saw potential in
expanding the back-projection layer to incorporate temporal
information. This was done by feeding all GRU output
information to a fully connected layer. Dependent on the
sequence, the fully connected layer is able to combine all
available information and fuse this to the output sequence.
All information fusing in one layer (Linear Combination
and Backprojection) allows this layer to weight the extracted
information from the GRU in a second instance. Applying
a residual connection forces the overall structure to model
joint velocities rather than poses. Due to the changes in the
network structure, the same residual architecture as used
by [13] was no longer possible and is changed to use the
last pose of the input sequence as input for the residual
connection (dotted line).

Setup - We conducted our experiments with our
own recorded dataset to evaluate the applicability of the
proposed method in a human-robot collaboration scenario.
A simple rectangular object with one screw in each corner
was used to simulate the assembly procedure. Each screw
was tightened by reaching for the screwdriver, tightening
and placing the screwdriver again in the rest position, see
Figure 2. The recorded dataset contains joint positions
in [x,y,z] format for 9 joints on the upper human body.
The recorded joint positions resemble a simplified human
torso skeleton, see Figure 3. A sequence of 120 seconds
of motion capture footage, using OptiTrack motion capture
system [17], was recorded at 120 Hz.
The recorded data was pre-processed applying error removal
and smoothing. After this, the pre-processed raw data was
fed to a skeleton generator to convert joint positions to the

Fig. 2. Schematic representation of the setup.

Fig. 3. Computed torso skeleton from joint angle space.

joint angle space. Our proposed architecture was trained on
the converted dataset.

Implementation Details The results presented in this
paper where obtained using the proposed method for an
input sequence of 120 frames followed by 120 predicted
frames. Experiments with the structure showed that 512
units in the GRU are sufficient for our requirements. The
recurrent neural network is implemented using Tensorflow
and was trained for 12h on a Nvidia GTX 1050Ti GPU.

IV. RESULTS

Finally we present the achieved results of our proposed
method for motion prediction. Due to the small dataset we
used, it was not feasible to split the dataset into test and train
data. However, the results should be representative enough
to evaluate the applicability of the proposed method. We
considered one second as input sequence to predict one
second ahead. We measured the error as mean angle error
as it has been done by [4], [13] to be able to compare it to
their results. Direct comparison to their results is not possible
since they consider full body motion compared to torso
motion in our tests. Figure 5 shows the development of the
mean angle error over a time span of one second. It indicates
low error for the first frames of prediction and increases as
time evolves. Showing a faster error development in the first
200 milliseconds, error develops slower and linear after 200
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Fig. 4. Absolute errors considering a average human person with 180 cm body height. Left: Shows the summed error of all joints. Right: Shows the error
of each joint individually. The results represent the average performance of 60 randomly selected samples.

milliseconds.

Fig. 5. Mean angle error plot of the proposed method as commonly used
by previous work.

Figure 4 was used to asses the achieved performance of
the proposed method. The left plots validate the results
from Figure 5 by showing a fast progressing error up to
200 milliseconds and slower development after. The right
plot reveals highest error for hand joint prediction. Still the
maximum error is less than 8 cm at its peak. The higher error
for the hand joints can be explained by assuming the highest
velocity for hand joints. [3], [4], [13] commonly provide
their results in mean angle error, for more easy comparison
Figure 5 is provided.

V. CONCLUSIONS

We demonstrated the potential of sequence to sequence
artificial neural networks for human robot collaboration
scenarios. The obtained results are still in a early stage,
but support our vision to use the proposed architecture
as scalable human motion prediction solution in human-
robot collaborative tasks. However, it allows to assess this
technology for usability and shows promising performance.
The introduced architecture offers sufficient accuracy with
low first frame errors, allowing for motion prediction on con-
tinuous data streams. Continuous prediction results can be
used to dynamically adjust motion trajectories of robots for
collision avoidance. Due to the scarcity of industrial datasets,
the next planned steps include to improve the dataset and
represent a more general motion model. Additionally, we
have an ongoing work to expand our current dataset and split
it into test and train sequences. This would allow to verify the
presented performance and asses the relevance for industrial
integration. Furthermore, for safe industrial integration, it
would be valuable to provide a certainty measure [9]. The
certainty of a predicted sequence could give a rough estimate
of how probable the predicted sequence is. We plan to cover
these points in our future work.
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