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Abstract—Mobile robotics applications process large amounts
of data in real-time and require compute platforms that provide
high performance and energy-efficiency. FPGAs are well-suited
for many of these applications, but there is a reluctance in
the robotics community to use hardware acceleration due to
increased design complexity and a lack of consistent program-
ming models across the software/hardware boundary. In this
paper we present RECONROS, a framework that integrates the
widely-used robot operating system (ROS) with ReconOS, which
features multithreaded programming of hardware and software
threads for reconfigurable computers. This unique combination
gives ROS2 developers the flexibility to transparently accelerate
parts of their robotics applications in hardware. We elaborate on
the architecture and the design flow for RECONROS and report on
a set of experiments that underline the feasibility and flexibility
of our approach.

Index Terms—Robotics, FPGA, ROS2, ReconOS

I. INTRODUCTION

Mobile robotics involves challenging tasks, especially when
drones or autonomous vehicles move in unstructured and
GPS-denied environments. In such scenarios, estimating the
local position and orientation (pose) is a fundamental task.
Data from different onboard sensors must be analyzed and
fused over time to achieve a robust pose estimation. Cameras
are widely used on mobile robots, and advanced computer
vision algorithms such as visual simultaneous localization and
mapping (SLAM) represent a key component for the pose
estimation [1]. Collaborative state estimation techniques are
deployed more recently where data from other (nearby) robots
is exploited to improve accuracy, and robustness [2].

Resource-efficiency is a fundamental challenge of all these
techniques since large amounts of data must be processed
in real-time [3]. Compared to implementations on CPUs and
GPUs, FPGAs have been shown to offer higher performance
and higher energy-efficiency for many of the involved tasks,
e.g., for vision kernels [4], for morphological image processing
functions [5], for feature detection and description algo-
rithms [6], and for convolutional neural network inference [7].
However, despite the demonstrated advantages of FPGAs,
their proliferation into the robotics domain is still limited for
several reasons. On one hand, FPGA design and, all the more,
software/hardware co-design are arguably more challenging
than embedded software development. On the other hand,

robotics engineers and application developers are typically
not trained in FPGA circuit or hardware/software co-design.

High level synthesis (HLS) tools that use standard C/C++
for describing behavior and (semi-)automatically take such
descriptions to FPGA hardware increase productivity and are
thus highly useful, but a consistent programming model for
implementing software and hardware functions is still lacking.
Porting a robotics application from software to hardware or
accelerating parts of the application in hardware requires the
creation of suitable interfaces between software and FPGA
hardware and very often leads to a re-development of substantial
parts of the application.

In our work, we take up a very popular programming
environment in the robotics domain, the robot operating system
(ROS). ROS is a middleware layer that models applications as
set of communicating nodes. We present RECONROS as a novel
integration of ROS with ReconOS [8]. ReconOS provides an
architecture and programming model to enable shared memory
multi-threading for software and hardware threads. RECONROS
allows robotics developers to utilize hardware acceleration for
ROS applications either as hardware-accelerated ROS nodes
or as ROS nodes mapped completely to hardware. The latter
option provides a consistent programming model for ROS
applications, independently of the mapping of ROS nodes to
software or hardware.

The remainder of the paper is organized as follows: Section II
provides an overview over ROS and related approaches for
integrating hardware accelerators into ROS. Section III elabo-
rates on different approaches for accelerating ROS applications,
before Section IV details RECONROS with its architecture
and design flow. In Section V, we present experiments to
demonstrate the feasibility and flexibility of RECONROS.
Finally, Section VI concludes the paper and gives an outlook
to future work.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the robot operating
system (ROS) and then analyze and compare related approaches
for integrating FPGA hardware acceleration into ROS.



A. The Robot Operating System (ROS)

The Robot Operating System (ROS)1 is an open-source
middleware on top of Linux for robotics applications that was
originally developed by William Garage and is now coordinated
by the Open Robotic Foundation. ROS comprises a multitude
of libraries and an infrastructure for building and reusing robot-
related software modules. The ROS programming paradigm
splits larger software architectures into nodes, which use certain
communication mechanisms for information exchange.

The decomposition into nodes promises code reusability and
modularity for robot architectures. Available communication
mechanisms comprise (i) a many-to-many publish/subscribe
model, which allows to broadcast messages to multiple sub-
scribers but is one-way, (ii) services that follow a client-server
model where the server provides data only if requested by the
client, basically mimicking a remote procedure call, and (iii)
actions, which make use of services but here the client can
receive regular feedback about the server’s progress.

ROS2 is the latest release of ROS. In earlier versions only one
ROS node per Linux process was supported. This prevented the
use of shared memory communication when both ROS nodes
are mapped to the same compute node. While this limitation
was mitigated through the support of so-called nodelets, with
ROS2 multiple ROS nodes can natively run within one Linux
process and there is support for shared memory communication.
ROS2 is built on top of an exchangeable communication layer,
the data distribution service (DDS). DDS is an industry standard
for decentralized communication and available from different
vendors. Compared to older ROS versions, the use of DDS
provides better configurability and improves properties such
as scalability, reliability and durability [9].

Another important element of ROS are ROS messages, which
are multi-layered combinations of built-in data types such as
integers, floats and strings. Besides predefined message types,
e.g., for images or 3D point clouds, custom messages can
be created. Since the length of a message might vary during
runtime, the ROS2 middleware supports dynamic memory
allocation for messages.

B. Related Approaches for ROS-FPGA Integration

In the last years, a few approaches have been presented
that integrate reconfigurable hardware accelerators into a ROS
software architecture. Yamashina et al. [10] proposed so-
called ROS-compliant FPGA components. A ROS node is
implemented in software and accesses the hardware component,
i.e., the accelerator, via a software wrapper. Communication
within the ROS network is completely handled in software
and, whenever acceleration is needed, only the payload of
the ROS message is transmitted to the hardware component.
Semantically, the communication between the ROS software
wrapper and the hardware accelerator is a remote procedure
call, realized in Xilinux. In [11], the automated design tool
cReComp (creator for reconfigurable component) is presented
to help generate ROS-compliant FPGA components and thus

1https://www.ros.org

reduce development costs. For the implementation of a ROS-
compliant FPGA component with eReComp, the developer
has to modify a configuration file and create user logic
for the hardware accelerator. The configuration file contains
information about the interface between the processing system
and the programmable logic. cReComp generates the software
and hardware parts for this interface. An evaluation by a
group of test developers confirmed higher design productivity
compared to manually designed interfaces.

In follow-up work, Sugata et al. [12] identify the communica-
tion times between ROS nodes as bottlenecks and aim to reduce
these times through implementing the ROS publish/subscribe
messaging in hardware. In their system, communication is
divided into two phases: the connection establish phase, which
is supported by software, and the data communication phase
that is realized by two network stacks implemented in FPGA
hardware. This reduces the communication time between nodes
by 50 percent. Ohkawa et al. [13] extend this work by using
high level synthesis (HLS) for accelerator implementation and
ROS protocol interpretation to increase productivity. Their
approach takes the ROS message definition, the ROS node
configuration, and behavioral code written in C/C++ for the
accelerator and generates the FPGA design. The infrastructure
of the generated design includes several components: the
hardwired TCP/IP stacks for the data communication phase, a
data conversion between ROS messages and the application,
an interface between the data conversion and the application,
and, finally, the application itself.

While [12], [13] migrate almost a complete ROS node to
hardware, Podlubne and Göhringer [14] go one step further
and propose a methodology for full-hardware implementa-
tion of a number of ROS nodes. Their hardware designs
comprise four parts: the ROS application nodes that use
publish/subscribe communication, a so-called application-to-
ROS converter, a communication interface, and a manager.
Basically, the application-to-ROS converter serializes the ROS-
based IP traffic on an AXI bus, the communication interface
handles the AXI messages and sends them to a TCP/IP stack
to connect to external ROS nodes, and the manager coordinates
the communication between the ROS nodes and the TCP/IP
stack. Conceptually, the application-to-ROS converter must
reside in hardware, but the communication interface and the
manger could also be mapped to the processing system of the
platform FPGA. However, the main feature of this methodology
is the option to implement one or more ROS nodes fully in
hardware and map them to reconfigurable logic without the need
of using a processor. Likewise, any application implemented
in reconfigurable hardware can be made ROS-compatible.
Furthermore, the presented implementation can use dynamic
custom ROS messages.

Strohmer et al. [15] presented a ROS-enabled hardware
framework for experimental robotics. They use the pro-
grammable logic on a Xilinx Zynq-7000 for signal conditioning
and partition the available CPU cores into a non real-time part
running Linux with ROS and a real-time part running control
algorithms. A distributed network of FPGAs can extend the

https://www.ros.org


signal conditioning part using TosNet, which provides memory
access across multiple nodes by memory mirroring.

III. DESIGN CONSIDERATIONS

The goal of this work is provide developers of ROS2-
based robotic applications with a flexible means to utilize
programmable logic for hardware acceleration. On the level
of ROS2 applications, there are several schemes for such an
integration, which are sketched in Figure 1. Figure 1(a) shows
a scheme where some parts of a ROS2 node, typically runtime-
consuming functions, are mapped to one or several accelerators
in programmable logic. The semantics of the communication
between the ROS2 node and the accelerators is that of a remote
procedure call (RPC). In Figure 1(b), a hardware accelerator is
shared between several ROS2 nodes. Communication semantics
is still RPC, but the implementation is more involved since
proper arbitration between the accesses of the ROS2 nodes is
required. The third scheme shown in Figure 1(c) is the most
advanced and allows to map complete ROS2 nodes to hardware.
Essentially, the hardware accelerator is turned into a ROS2
node. In this scheme, all ROS2 nodes can communicate via
the ROS2 publish/subscribe mechanism, independently of their
mapping to software or hardware. Semantically, this is the most
intriguing scheme since it provides a consistent programming
model across hardware and software where all ROS2 nodes
use exactly the same ROS2 functions. Furthermore, arbitrary
combinations of the schemes are also conceivable.

HardwareSoftware

(a) (b)

RPC

(c)
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node
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Fig. 1: Different schemes for integrating ROS2 node with
hardware accelerators

Naturally, RECONROS allows developers to implement
accelerators and ROS2 nodes in hardware that directly connect
to peripherals such as A/D converters or non-USB cameras in
reconfigurable logic or directly connect several ROS2 nodes,
all without any software interaction. While such schemes are
sometimes followed to maximize performance in concrete
robotics applications, there are also two possible counter-
arguments: First, flexibility is reduced since directly connected
peripherals can not be accessed by other ROS2 nodes, and
much less so when the ROS2 nodes are mapped to different
compute nodes in a distributed system. Second, many sensors
and actors come with standardized interfaces and corresponding
drivers, e.g., USB, for which the use of an existing, software-
accessible peripheral of the compute platform is much easier
than to implement suitable interfaces and protocol stacks in
hardware.

Characteristic [10], [11],
[12], [13] [14] [15] RECONROS

ROS version 1 1 1 2
Support of hw/sw
co-designed ROS nodes X 7 X X

Multiple ROS
nodes per FPGA 7 X 7 X

Consistent hw/sw
programming model 7 7 7 X

Memory access
for hw accelerators 7 7 7 X

Support of arbitrarily
large ROS messages 7 7 7 X

TABLE I: Comparison of approaches for integrating hardware
accelerators with ROS

RECONROS2 integrates the ROS2 middleware with the
ReconOS/Linux architecture and programming model for
hardware/software multithreading on platform FPGAs and can
realize all schemes shown in Figure 1 and their combinations.
On one hand, ReconOS enables us to develop applications
as a set of software and hardware threads under the shared
memory model. On the other hand, ROS2 allows for declaring
several ROS2 nodes within one Linux process. Therefore,
in the first and second scheme of Figure 1, each hardware
accelerator is encapsulated by a ReconOS hardware thread. In
contrast to related work, RECONROS hardware accelerators
can communicate with the ROS2 software nodes not only by
passing data in an RPC manner, but can also use shared memory
communication in the Linux virtual address space, which is
more efficient when larger data structures have to be passed.
In such a case, pointers to arbitrarily large ROS2 messages
are passed and the accelerators themselves retrieve the relevant
message payload from shared memory. Furthermore, since
ReconOS hardware threads can execute standard operating
system synchronization primitives, the required arbitration for
scheme two is straight-forward to realize. In the most advanced
scheme shown in Figure 1(c), ReconOS hardware threads
implement complete ROS2 nodes and allow them to access
operating system functions and also ROS2 communication
primitives, using the whole set of standard and even custom-
defined ROS messages.

Table I compares RECONROS with related approaches. In
contrast to all other approaches, RECONROS leverages the
more future-oriented ROS2 version which promises improved
scalability and real-time properties. Hardware acceleration of a
ROS node mostly implies to partition the node and implement
it as hardware/software co-design. This is followed by all
approaches except [14], which maps complete ROS nodes to
hardware. Mapping several ROS nodes to hardware is possible
in [14] and RECONROS. A consistent hardware/software pro-
gramming model, the memory access for hardware accelerators,
and the support of arbitrarily large ROS messages are unique
features of RECONROS.

2https://github.com/Lien182/ReconROS



IV. RECONROS
In this section, we present the architecture of RECONROS,

followed by the design flow and an example that shows the
programming interface.

A. Hardware/Software Architecture

RECONROS inherits most of its hardware architecture from
the underlying ReconOS [8], [16]. Figure 2 shows an example
architecture with two hardware ROS2 nodes (threads) and
several software ROS2 nodes (threads). The hardware threads
are mapped to reconfigurable slots and are connected to the
Linux operating system kernel running on the CPU via the
operating system interface (OSIF) and to shared memory via
the memory interface (MEMIF). A so-called operating system
finite state machine (OSFSM) is attached to each hardware
thread to serialize the thread’s operating system interactions.
On the CPU, the communication with the OSIF is handled by
a ReconROS driver and by light-weight delegate threads that
serve the operating system calls for the hardware threads. The
memory subsystem enables the hardware threads to access the
whole address space of the RECONROS application, including
shared memory and memory-mapped peripherals. ReconOS
supports virtual memory and therefore includes an MMU in
its memory subsystem.

To realize RECONROS, we needed to develop two com-
ponents, the RECONROS stack and the RECONROS API for
software and hardware threads. The RECONROS stack extends
the existing set of ReconOS objects, such as semaphores
or mailboxes, with the four new objects rosnode, rossub,
rospub, and rosmsg. These objects relate to ROS2 nodes, ROS2
publisher, ROS2 subscriber, and ROS2 messages, and can be
created when configuring a ROS2 application.

The RECONROS API abstracts the standard ROS2 API
and allows ReconOS threads to access the objects of the
RECONROS stack. As indicated in Figure 2, the RE-
CONROS API is available for both software and hard-
ware threads and currently includes the three functions
ROS SUBSCRIBER TAKE for blocked message subscribing,
ROS SUBSCRIBER TRY TAKE for unblocked message sub-
scribing, and ROS PUBLISHER PUBLISH for message pub-
lishing. Software threads can not only access the RECONROS
API but also the standard ROS2 API to utilize a richer set
of functions. For hardware threads, the set of three functions
implemented in the RECONROS API is sufficient to implement
ROS2 hardware nodes that receive data, process it, and send it
back. However, due to the flexibility of the underlying ReconOS
system any ROS2 function can be made available for hardware
threads.

In contrast to related work, our ROS2 hardware nodes can
access shared memory and thus implement a more efficient ROS
message handling. When hardware threads access functions
of the RECONROS API for subscribing or publishing to
topics, the OSIF and the delegate thread mechanism is used
to pass pointers between the RECONROS stack in software
and the hardware threads to allow them to access the ROS
message data structures in memory through their MEMIFs.

Compared to message communication via the OSIF, which
corresponds roughly to the mechanism used in related work,
this design decision brings about two advantages: First, the
MEMIF interface provides higher data rates due to the used AXI
high performance interface of the processing system. Second,
the transmission of the data can be done without using the
processing system, which leads to more potential for parallel
execution of software and hardware threads.

Figure 3 exemplifies the sequence of events when a hardware
ROS2 node initiates a ROS_SUBSCRIBER_TAKE operation
from the RECONROS API 1 . The function call of the
hardware thread includes the command for this API function
and a reference to the subscriber. The command is transmitted
by the OSFSM and unblocks the corresponding delegate thread
on the CPU. The delegate then executes the ROS2 subscriber
take function rcl_take on behalf of the hardware thread 2 .
When a message for the subscribed topic becomes available, the
RECONROS stack stores it in main memory 3 and unblocks
the delegate thread 4 , which in turn sends the message pointer
via the OSIF back to the hardware thread 5 . Subsequently,
the hardware thread can read the message via its MEMIF
6 . Publishing a message from a hardware thread works

analogously: First, the hardware threads stores the message in
the main memory. Then, it sends a ROS_publish command
and the message pointer via the OSIF interface to its delegate
thread, which executes the command.

B. Design Flow

Designing a RECONROS application starts with creating
the RECONROS configuration file and the implementations
for the software and hardware threads. The configuration file
specifies the ROS2 objects and their dependencies as well
as the implementation architecture including the number of
reconfigurable slots, used RECONROS primitives, threads,
mapping of threads to slots, and settings for the toolchain.

The basic element of each RECONROS application is the
rosnode object, which represents a ROS2 node in the network.
A ROS2 node is equipped with one or more subscriber (rossub)
and / or one or more publisher (rospub) objects attached to
specific topics. In addition, each rossub / rospub gets a reference
to an instance of a ROS message rosmsg of a specific type.
Declarations of rosmsg objects are specified by their group,
e.g., sensor msgs, and type, e.g., Image.

The actual tool flow for a RECONROS project extends the
original ReconOS tool flow [8]. Based on the configuration
file, the ReconOS development kit creates a hardware project
and a software project. The hardware project contains the
RECONROS infrastructure, comprising, among others, the
OSIFs, the MEMIFs, and the hardware threads. The software
project includes the delegate threads, all necessary initialization
functions for the ReconOS primitives but also the ROS2
middleware. In the following build step, the software binaries
and the FPGA configuration bitstream are generated.

We provide the same RECONROS API for software threads
written in C and for hardware threads described in VHDL or
C/C++ for high-level synthesis. For hardware threads created
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with HLS, we pass the ROS message layout information stored
in ROS message header files on to the HLS translation process.
This allows for a straight-forward way of writing hardware
threads that can access only relevant parts of a ROS message
through their MEMIFs, without having to load whole messages
into the FPGA.

C. Example ROS2 Application

Figure 4 outlines a ROS2 application comprising three nodes.
The first node captures images from a camera and publishes

them to the topic /image_raw. The second node subscribes
to this topic, reads and filters the images, and publishes the
result to the topic /image_filtered. The third node reads
and displays the filtered images.

Generally, the ROS2 application can run either on a single
platform FPGA or on multiple platform FPGAs in a distributed
ROS2 setup. Independently of the setup, the filter node of
this application is to be a Sobel filter described in HLS and
mapped to hardware. Thus, the RECONROS configuration file
must specify the needed primitives. Listing 1 shows the ROS-
related part of the configuration file for this node. The first line
of the listing defines the message type as Image. Line two
instantiates the ROS node node_2 with the name "filter".
The following two lines equip the filter node with a publisher
and a subscriber object. Each of them specifies a message type
and the corresponding topic. Additionally, the subscriber object
includes a sleep time (10000 µs) for which the node will wait
for new messages.

Node 1:
Camera

Node 2:
Filter

Node 3:
Viewer

/image_raw /image_filtered

Fig. 4: Example ROS2 application



Listing 1: RECONROS configuration example

image_msg = rosmsg,sensor_msgs,msg,Image
node_2 = rosnode,"filter"
sub=rossub,node_2,image_msg,"/image_raw",10000
pub=rospub,node_2,image_msg,"/image_filtered"

Listing 2 presents the main HLS code for the implementation
of the filter node. Using the RECONROS API, the processing
loop starts with a blocking subscription for a new message
containing an image. When a message becomes available, the
function ROS_SUBSCRIBER_TAKE returns a pointer to the
message data structure. With the help of the OFFSETOF macro,
another pointer to the address of the message’s payload is
determined. Using this payload pointer, the image location can
then be read from main memory via the MEM_READ macro.
Subsequently, the image data is read into a ram structure
within the FPGA, a Sobel filter is executed on the image, and
the filtered image is written back to main memory via the
MEM_WRITE macro. Finally, the node publishes the filtered
data to the /image_filtered topic.

Listing 2: HLS implementation example

while(1) {
uint32 msg_ptr =
ROS_SUBSCRIBER_TAKE(resources_subdata,

resources_image_msg );
uint32 payload_pt_addr = OFFSETOF(

sensor_msgs__msg__Image, data.data)
+ msg_ptr;

MEM_READ(payload_pt_addr, payload_ptr,
BLOCK_SIZE);

MEM_READ(payload_ptr, ram, BLOCK_SIZE);
Sobel_Filter(ram);
MEM_WRITE(ram, payload_ptr, BLOCK_SIZE);
ROS_PUBLISHER_PUBLISH(resources_pubdata,
resources_image_msg);

}

V. EXPERIMENTS

In this section, we describe a set of experiments to demon-
strate the feasibility and flexibility of RECONROS. First, we
report on communication time measurements, then we demon-
strate the flexible mapping of ROS2 nodes to either software
and hardware and, finally, we present a hardware/software
co-designed ROS2 node.

For all experiments, our setup consists of a desktop PC
with an Intel Core i5 processor connected via Gigabit ethernet
to a Mini-ITX 7Z100 board containing a Xilinx Zynq-7100
platform FPGA. On both platforms, we run ROS2 Dashing
on Ubuntu 18.04 LTS. All applications use the same C/C++
source for software and hardware implementations. All software
implementations have been compiled with optimizations level
O3, and all hardware implementations have been created with
HLS without any optimizations except for the Sobel filter.

A. Communication Times

To characterize communication times, we have implemented
a ping-pong RECONROS application with two ROS2 nodes
distributed onto a desktop PC and the Zynq board as shown
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Fig. 5: RECONROS ping-pong application

in Figure 5. The ROS2 node on the PC publishes messages to
the topic T:/send. The ROS2 node on the Zynq subscribes
to these messages, creates copies of them in local memory,
and publishes them to the topic T:/recv. The ROS2 node
on the PC measures the roundtrip time of the transmission as
tround = tend − tstart.

Table II presents the measured roundtrip times for different
message sizes and for the ROS2 node on the Zynq mapped to
either software (tround−SW ), shown in Figure 5(a), or hardware
(tround−HW ), shown Figure 5(b). Mapping the Zynq-based
ROS2 node to hardware (PL) results in slightly increased
roundtrip times compared to mapping it to software (PS). This
effect is due to the fact that the hardware ROS2 node copies
the message into its local memory (BRAM) first, before it
writes it back to main memory, and this process is slower than
the ARM CPU’s memory copy operation. The last column
shows tsingle, the time to transmit a message single way, from
the PC to the ARM core on the Zynq. This time has been
determined by subtracting the runtime of the software-mapped
ROS2 node from tround−SW and dividing by two.

Message size
[Byte]

tround−SW

[ms]
tround−HW

[ms]
tsingle

[ms]
4 1.75 1.76 0.88

8 k 10.45 11.00 4.62
1 M 141.44 161.63 68.22
6 M 485.39 555.43 228.15

TABLE II: Ping-pong communication times

The RECONROS communication times in Table II are in the
same order as that of related work [12], where communication
times were measured between a ROS node on a PC and a ROS
node on an ARM within a Zynq for messages of size 1 Mbyte
and 6 MByte, albeit on a different ROS version. Importantly,
the two versions of the RECONROS ping-pong application in
Figure 5(a) and (b) are semantically identical. Switching from
one to the other simply requires a change in the RECONROS
configuration file and to start the software or hardware ROS
node, respectively, in the application’s main routine.



B. ROS2 Hardware Nodes

We have implemented three applications to demonstrate the
flexibility of RECONROS in mapping ROS2 nodes to either
software or hardware. All applications use the setup shown
in Figure 5: A ROS2 node mapped to the PC publishes data
to a topic and receives processed data on another topic. The
processing itself is done by a ROS2 node on the Zynq platform,
either by a ROS2 software node mapped to the ARM core
(software version) or by a ROS2 hardware node mapped to
reconfigurable logic (hardware version). The applications are:

1) Inverse kinematics: This application computes control
signals for driving a servo motor that sets a joint angle
based on a desired position and orientation of a robotic
manipulation platform. The application is part of a larger
mechatronic system [17] for controlling the movements of
a Stewart platform [18] with six degrees of freedom. The
computation involves coordinate transformations and an it-
erative implementation of the arctan() function. The ROS2
input message is an unsigned 32 Bit integer packed with two
fixed-point numbers in Q8.6 format that represent the desired
rotation angles of the platform around the x-axis and the y-axis.
The ROS2 output messages is also a 32 Bit unsigned integer
containing a 10 Bit unsigned integer which is the pulse width
coded control signal for the motor.

2) Number sorting: This application sorts an array of 32
Bit unsigned integers based on the odd-even transposition
sort algorithm [19]. The algorithm is based on a comparator
network that employs n stages with n comparisons each to
sort n numbers. The ROS2 node on the PC generates random
numbers and publishes messages comprising 2048 numbers as
an array. The Zynq-based ROS2 node sorts the data and sends
it back.

3) Sobel filter: This application implements a Sobel image
filter [20] operating on three channels (RGB) of dimension
640×480. The filter applies two filter kernels on each channel
of the image and calculates the absolute value of the dot product
as an approximation for the geometric mean. The ROS2 input
and output messages are of the type Image from the ROS2
sensor message package.

RECONROS application Slice LUTs DSP BRAM
Inverse kinematics 4802 (1.73%) 17 (0.84%) 3 (0.40%)
Number sorting 10396 (3.75%) 0 (0.00%) 2 (0.26%)
Sobel filter 13625 (4.91%) 0 (0.00%) 10 (1.32%)
ORB-SLAM2 194585 (70.15%) 26 (1.4%) 82 (11%)

TABLE III: Resource usage and utilization (in % of the Xilinx
Zynq 7100) for the implemented RECONROS applications

Rows 2-4 of Table III display the resource usage and
utilization for the three applications and rows 2-4 of Table IV
the execution times for the Zynq-bound ROS2 nodes, which
are either mapped to the ARM core (software runtime) or to
reconfigurable logic (hardware runtime). The inverse kinematics
application achieves a speedup of 6, the number sorting
application does not benefit from hardware mapping, and
the Sobel filter is accelerated by a factor of 2. It has to be

noted that the goal of these experiments has been to test and
demonstrate the feasibility and flexibility of RECONROS rather
than achieving high speedups through hardware acceleration.
Hence, with the exception of an HLS unroll pragma for the
Sobel filter no optimizations have been applied for HLS. There
is obviously a certain potential to improve the speedups for
the hardware accelerators, in particular for the number sorting
application where more parallelism can be exploited.

RECONROS application Software
runtime

Hardware
runtime Speedup

Inverse kinematics 1.2 ms 0.2 ms 6.00
Number sorting 176.0 ms 342.0 ms 0.50
Sobel filter 44.0 ms 22.6 ms 2.00
ORB-SLAM2 0.77 fps 0.96 fps 1.25

TABLE IV: Runtimes for the software and hardware versions
of the implemented RECONROS applications and achieved
frame rates (in frames per second, fps) for ORB-SLAM2

C. Hardware-accelerated ROS2 SLAM

As an example of a larger RECONROS application that
utilizes a hardware-accelerated ROS2 node instead of a ROS2
node fully mapped to hardware, we have implemented an
ORB-SLAM2 [21] algorithm. ORB-SLAM2 is a state-of-the-art
feature-based simultaneous localization and mapping (SLAM)
algorithm for robotics, which is designed to operate in real-time
in in-door and out-door environments. Due to its exchangeable
input processing step and the use of key points for localization,
ORB-SLAM2 supports a wide range of input data formats such
as monocular images, stereo images, and RGB-D images. The
input processing step transforms the input image into a map
of features.

ORB-SLAM2 relies on corners as features and employs the
FAST [22] algorithm for corner detection. FAST detects corners
by inspecting a 16 pixel circle around a pixel of interest and
checking whether at least nine contiguous pixels in that circle
are darker or brighter than a given threshold. FAST is well-
suited for parallelization since the computations are independent
for all pixels. Our hardware/software co-designed version of
the ORB-SLAM2 RECONROS application implements the
compute-intensive FAST algorithm in reconfigurable logic,
while the subsequent steps, i.e., (i) tracking of the camera
by matching features from the camera to the local map, (ii)
managing the local map, and (iii) detecting large loops and
accumulating drift correction due to pose-graph optimization,
are mapped to software and are executed on the ARM core.

Figure 6 sketches the architecture of the co-designed ORB-
SLAM2 implementation. The ROS2 node receives incoming
data by subscribing to the topic T:/stereo, which includes
two subtopics with messages of type Image that correspond to
two stereo channels (T:/stereo/left/image_raw and
T:/stereo/right/image_raw). The software part of the
ROS2 node writes the stereo images to main memory 1 and
calls the hardware accelerator to execute a FAST operation.
This involves passing a pointer to the images in memory and
information about the image size to the accelerator via the
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ReconOS mailbox communication primitive MBOX 2 . The
accelerator actually comprises two ReconOS hardware threads,
one for each channel of the stereo stream. The hardware threads
load the images into FPGA-internal memory 3 , process them
4 , and write the extracted features back to main memory
5 . The number of extracted features are then sent back via

ReconOS mailbox communication to the software part 6 ,
which retrieves the features from main memory 7 , proceeds
with its computation and finally publishes the calculated
trajectory to a corresponding ROS2 topic.

We have tested the ORB-SLAM2 application on the KITTI
data set [23] to ensure its correct functionality. The hardware
accelerator has been created with HLS, again without opti-
mization. The resulting resource usage and utilization is shown
in row 5 of Table III. The averaged execution time for the
software application is 1.3s per image frame, and the hardware-
accelerated application with two hardware threads achieves
1.04 s per image frame. This results in the frame rates shown
in row 5 of Table IV and a speedup of 1.25.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented RECONROS, a novel
approach that enables developers of ROS2 robotics applications
to leverage the performance and energy-efficiency of FPGA
implementations. RECONROS bases on ReconOS and allows
for flexible hardware acceleration of ROS2 nodes through an
API that supports a consistent programming model for ROS2
nodes across hardware/software boundaries, while preserving
the main advantages of ReconOS such as full memory access
for hardware threads or operating system like synchronization
mechanisms for hardware/software co-designed applications.

In future work we want to also provide the ROS2 communi-
cation patterns services and actions to hardware nodes. Since
in distributed ROS networks not all compute nodes might be
equipped with platform FPGAs, we plan to investigate the
feasibility of a ROS2 node offering acceleration-as-a-service.
Furthermore, we want to leverage partial reconfiguration

available with ReconOS [8] to manage the reprogrammable
hardware resources more efficiently, for example by configuring
ROS2 hardware nodes on demand. Finally, we plan to deploy
an FPGA-based compute board on small scale drones to demon-
strate the benefits of ROS-based flexible onboard hardware
acceleration in drone applications such as surveillance and
search and rescue [24].
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