
Mission Specification and Execution of Multidrone
Systems

Markus Gutmann, Bernhard Rinner
Institute of Networked and Embedded Systems

University of Klagenfurt, Austria
markus.gutmann@aau.at, bernhard.rinner@aau.at

Abstract—Small unmanned aerial vehicles, commonly called
drones, enable novel applications in many domains. Multidrone
systems are a current key trend where several drones operate
collectively as an integrated networked autonomous system to
complete various missions. The specification and execution of
multidrone missions are particularly challenging, since substantial
expertise of the mission domain, the drone’s capabilities, and
the drones’ software environment is required to properly encode
the mission. In this position paper, we introduce a specification
language for multidrone missions and describe the transcoding of
its components into the multidrone execution environment for both
simulations and real drones. The key features of our approach
include (i) domain-independence of the mission specification, (ii)
readability and ease of use, and (iii) expandability. The specifi-
cation language has a simple syntax and uses a parameterized
description of execution blocks and mission capabilities, which
are derived from native drone functions. Domain-independence
and expandability are provided by a clear separation between
the specification and the implementation of the mission tasks.
We demonstrate the effectiveness of our approach with a selected
multidrone mission example.

I. INTRODUCTION

Throughout the past years, small unmanned aerial vehicles
(UAVs) or drones have become increasingly popular among
many users ranging from hobbyists to civil authorities and
industries to researchers. There is a wide variety of civilian
drone applications including traffic monitoring, remote sens-
ing, search-and-rescue operations, delivery of goods, security
and surveillance, and precision agriculture [1]–[4]. While the
number and types of drones are growing and use cases become
more complex, the necessary software for controlling drones
and their mission deployments is evolving at a slower pace.
Such software support is particularly relevant for multidrone
missions where the description of mission objectives and their
execution should be handled efficiently and effectively.

Figure 1 depicts a search-and-rescue mission as a running
example in this paper. A fleet of heterogeneous drones supports
a rescue operation after a plane crash. In a nutshell, first
responders need to (i) acquire an overview of the accident
site, (ii) localize sources of emissive radiation, and (iii) search
for victims. This mission consists of three concurrent and
interdependent tasks: First, patrolling the site with two video-
drones along predefined routes and constantly streaming videos
to a ground control station (GCS). Second, exploring the site
with flir-drones and a sensor-drone to search for victims and
radiation sources, respectively. Third, in case of successful

Fig. 1: Example search-and-rescue mission with heterogeneous drones. Two
video-drones patrol over different areas streaming live video data, while two
flir-drones search for victims and a sensor-drone searches for radiation sources.
In this scenario, flir-drone1 has spotted a victim, which triggers beacon-drone2
to fly a red-light beacon to the victim. Similarly, the sensor-drone has found a
radiation source that triggers beacon-drone1 to drop a blue-light beacon there.

detection, load a corresponding light beacon on a beacon-drone,
fly to the target position, and unload the beacon.

In this position paper, we introduce a specification language
for multidrone missions and describe the transcoding of its
components into the multidrone execution environment for both
simulations and real drones. There are already several mission
specification methods for robot systems available, and they
strongly vary concerning the level of specification detail, the
target missions and users, and the implementation maturity. The
key features of our approach include (i) domain-independence
of the mission specification, (ii) readability and ease of use, and
(iii) expandability. This combination is novel for multidrone
systems, since existing specification approaches typically focus
only on two of these features.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III introduces our
mission specification language design. Section IV describes the
envisioned architecture and used tools. Section V sketches a
specification example, and Section VI concludes the paper.

II. STATE OF THE ART

There are several methods that offer user-oriented ways of
specifying multidrone missions. These methods vary concern-
ing the used language families and user interfaces as well as
application domains, target platforms, and end users. Prominent
representatives for procedural multi-purpose programming lan-
guages (such as Java) are the (swarm-) programming languages
KARMA [5], VOLTRON [6], PaROS [7], and BUZZ [8],
while representatives for declarative markup languages (such
as XML) include the task-based mission specification language
TML [9] and the mission description language MDL [10].
Programming-like languages provide a much richer feature
set and a higher degree of expressiveness than their markup-
based counterparts. However, their handling also requires pro-
gramming skills, which makes them less suitable for quick
applications in dynamic ad-hoc scenarios.

The end user orientation of markup-languages comes at the
cost of reduced flexibility concerning the application domain
and the used platforms. CommonLang [11] and the PROMIS
framework [12], which enables the specification of high-level
goals rather than atomic mission steps are further examples.
Schwartz et al. [13] represent a mission in a flow-chart-like
diagram that is easy to comprehend and simple to generate
but lacks proper support for concurrency. As a further graph-
ical approach, RobotML [14] enables the user to graphically
model architecture, communications, behavior and deployment
of robotic systems.

The Temporal Action Logic [15] with its abstract task specifi-
cation trees or the approach by Ashley-Rollman et al. [16] that
extends the logic programming language Meld are examples
for formal approaches. Apparently, such notations are difficult
to handle and not suited for out-of-the-box applications. Fur-
thermore, graphical user interfaces exist, which are typically
easy to use but rather tightly bound to the application they are
developed for. There are several examples of such user inter-
faces for drones, including FlyAQ [17], the mission definition
system [18], the FlightMaster software platform [19] or simply
the mission planner from ArduPilot [20].

III. MISSION SPECIFICATION AND EXECUTION

A. Requirements

The development of our multidrone mission specification and
execution is based on the following core requirements.

a) Multidrone Support: Involving multiple drones in mis-
sions is integral to our approach, and handling of an arbitrary
number of drones should therefore be provided implicitly.

b) Concurrency: The specification of concurrent pro-
cesses that involve multiple drones should be intuitive and easy.
Such processes include starting tasks, reacting to environmental

events, or communicating with each other. Explicit synchro-
nization of concurrent processes should be hidden from the
user.

c) Language Usability: Users should be able to specify
new missions with little training. The mission specification
should be composed by simple expressions based on an intuitive
syntax. This requirement aims at domain experts as the primary
user group rather than drone experts.

d) Domain Independence: The language should not be
limited to a particular application domain such as inspection,
surveillance, delivery of goods, communication services, or
search-and-rescue.

e) Expandability: The user should be able to easily define
new mission tasks based on capabilities supported by drones.
These mission capabilities should transparently expand the
native specification language and the predefined drone func-
tionalities.

f) Algorithmic Decoupling: The specification and execu-
tion of a multidrone mission and the corresponding necessary
control mechanisms should be clearly decoupled from low-level
algorithms of individual drones. This way, the user should not
be concerned about how individual drones, for example, avoid
collisions while the mission progresses.

B. Overview

Our mission specification and execution system relies on the
following entities. Drones with a set of native functionality
such as launching, landing, flying-to, target detection, and
video streaming serve as the basis for a mission. A drone-API
provides access to the native drone functionality. To configure
our system, this functionality needs to be integrated into our
middle-layer-API that decouples our (high-level) mission spec-
ification from the (low-level) functionality of the considered
drone models. Mission capabilities are built with the functions
of the middle-layer-API and serve as essential building blocks
for the mission specification. A multidrone mission is finally
composed by a set of execution blocks, which may use mission
capabilities, expressed in our mission specification language.

The ground control station (GCS) establishes the commu-
nication with the drones and acts as execution environment
for a mission. It provides (i) the middle-layer-API, (ii) the user
interface for loading, compiling, and controlling a mission, and
(iii) the execution engine for running a mission, in particular
its execution blocks. The execution blocks, interfaces, and
necessary control structures are compiled into an executable
program. The mission specification language and the execution
architecture are described in the following subsections.

C. Specification Language

In the following, we describe key elements of our domain-
specific language (DSL) for defining multidrone missions and
provide its EBNF-notation (cf. EBNF-Listing 1).

〈mission〉 ::= Mission 〈identifier〉 : 〈block〉 (1)
〈block〉 ::= 〈seqBlock〉 | 〈parBlock〉 (2)

〈seqBlock〉 ::= SEQUENTIAL 〈identifier〉? : 〈blockBody〉 (3)
〈parBlock〉 ::= PARALLEL 〈identifier〉? : 〈blockBody〉 (4)
〈blockBody〉 ::= (〈statement〉 | 〈requirement〉 | 〈foreachBlk〉 | (5)

〈eventTrigger〉 | 〈eventHandler〉 |
〈exceptionTrigger〉 | 〈exceptionHandler〉 |
〈block〉) +

〈statement〉 ::= 〈actor〉+ 〈capability〉 〈arguments〉 ∗ (6)
〈requirement〉 ::= (STARTIF | WAITFOR | DOWHILE) (7)

〈condition〉 〈block〉
〈eventTrigger〉 ::= SIGNAL 〈event〉 〈arguments〉 ∗ (8)
〈eventHandler〉 ::= (SEQUENTIAL | PARALLEL) ON 〈signal〉 : (9)

〈block〉
〈foreachBlk〉 ::= (SEQUENTIAL | PARALLEL) FOR (10)

〈instance〉(AND 〈instance〉) ∗
AS 〈identifier〉(WITH 〈argsList〉)? : 〈block〉

〈instance〉 ::= 〈actor〉 (WITH 〈argsList〉) ∗ (11)
〈arguments〉 ::= (WITH 〈argument〉(, 〈argument〉)∗)? (12)

EBNF-Listing 1. Excerpt of key grammar elements of our mission
specification language. The elements 〈condition〉, 〈execptionTrigger〉, and
〈exceptionHandler〉 have a similar definition but have been omitted due to
space limitation.

a) Blocks: Blocks are named containers for statements
or other blocks and can be used to form a hierarchical tree
structure. A sequential block (cf. rule 3) processes its children
c1, c2, . . . , cn one after the other whereas ci+1 is started only if
ci has finished its execution. Thus, a sequential block terminates
when its last child has terminated. On the other hand, a parallel
block (cf. rule 4) starts all children at the same time and
terminates when all children have finished.

b) Statements: A statement is a call of a mission capabil-
ity by stating one or multiple actors (name of the drone), the
name of the capability, and optional arguments (cf. rule 6).

c) Event Triggers and Event Handlers: Event triggers are
denoted with the keyword SIGNAL, their signal name and
an arbitrary number of event arguments (cf. rule 8). Event
handlers are denoted with the keyword ON, which is prepended
with either of the keywords SEQUENTIAL or PARALLEL,
and followed by the signal name to handle (cf. rule 9). Event
handlers are semi-synchronous because they (i) handle the first
event that matches the event name and that occurs in the block
of the handler or in one of its predecessor-blocks and because
(ii) the prepending keywords SEQUENTIAL and PARALLEL
determine whether the event handler is executed immediately
and in parallel to the signalling actor or whether it waits
until the currently executing block of the signalling actor has
finished.

d) Exception Triggers and Exception Handlers: Throwing
and handling exceptions behave similarly to events. By using
the keywords THROW EXCEPTION followed by the name
of the exception and none, one, or multiple arguments, all
executions of the actor that threw the exception are aborted,
and execution of the corresponding exception handler starts

immediately. Like event handlers, exception handlers are semi-
synchronous and handle only those exceptions that get thrown
in the handler’s block or in one of its predecessor blocks.

e) Control Flow: Requirements that influence the execu-
tion of a mission are specified with the keywords STARTIF
(i.e., execute a statement only if a condition is true at the time
of the evaluation), WAITFOR (i.e., wait for a certain condition
to become true before starting to execute the subsequent block),
and DOWHILE (i.e., execute the subsequent block as long the
corresponding condition is true), all followed by a conditional
expression and the block to execute. Furthermore, using FOR
executes the FOR-block for all declared actors and arguments
either in parallel or sequentially. Note, that starting the in-
stantiated blocks of a FOR-block sequentially or in parallel
is independent on how the enclosed execution block starts its
enclosed statements.

f) Mission Capabilities: A mission specification consists
of both execution blocks and mission capabilities that actors use
in the mission. Mission capabilities enable one to encapsulate
mission logic to facilitate its reuse (like with a method in
Java), but their key feature is to enable using middle-layer-API
functions which are called according to the standard syntax of
calling methods (like for example in Java):

〈API-Call〉 ::= 〈actor〉 . 〈API-function〉 (〈parameterValues〉 ∗)

Here, actor refers to the actor on whom the capability was
called and API-function refers to a well-defined function from
the middle-layer-API (cf. Section III-D).

g) Capability Control: A mission capability consists of
the following top-level sections that implement its internal
context: REQUIREMENTS defining conditions that determine
the execution; DEFAULTS setting default values for the pa-
rameters if no corresponding arguments were set by the caller;
PERFORM defining the core execution logic using language
features and API-calls; and EXCEPTIONS defining different
error situations. Additional perform-sections with an assigned
identifier might be declared to define further execution logic.
While the nameless perform-section starts an activity initially,
named perform-sections, which are also referred to as leashes,
enable the mission operator to control already running activ-
ities. Pre-defined leashes that are available on any capability
are ABORT, PAUSE, and RESUME. A prerequisite for using
leashes is to postfix the capability name within a mission
statement with a ”-” followed by an identifier. For example,
”flir-drone TakeOff-F1” starts the activity by executing the
capabilities’ standard perform-section. From then on, using the
capabilities name together with any of the available leashes,
would just call the corresponding named perform-section, like
FlyTo-F1 ABORT.

D. Execution Architecture

Figure 2 illustrates the layered architecture of our mission
execution system. The hardware layer abstracts the available
low-level drone functionality via the native-drone-API, which
serves as interface to the execution layer. This layer provides

the conversion from native drone functionality to mission capa-
bilities by mapping the native-drone-API to the middle-layer-
API via the API-wrapper. This mapping must be implemented
during the configuration of the execution architecture. The exe-
cution engine executes the compiled mission program and com-
municates with the drones via the available wireless network.
In particular, it sends and receives drone data by invoking the
correspondent functions of the native-drone-API. The middle
layer acts as an abstract interface between the mission layer
and the drones. It unifies the diverse functionalities into a well-
defined API and provides mission capabilities or supports the
generation of new mission capabilities by the mission operator.
Finally, the mission layer represents the interface to the mission
operator who specifies missions with execution blocks and
mission capabilities.

The top three layers are implemented on the ground control
station, whereas the bottom layer is deployed on the drone
platforms. Thus, to adapt the architecture to different drone
platforms, only the hardware layer and the interface in the ex-
ecution layer needs to be changed. This is particularly relevant
for multidrone simulation environments where the simulator,
such as AirSim or Gazebo, corresponds to the hardware layer
and hence the entire architecture can be implemented on a
single computer.

IV. IMPLEMENTATION

A. Mission Capabilities

Mission capabilities orchestrate available drone capabili-
ties together with a certain capability context to mission-
specific activities. When a mission statement is executed, the
corresponding mission capability gets instantiated by passing
the contextual values of the mission statement (e.g., actors
and optional argument values) to the internal context of the
mission capability (i.e., requirements, perform-section, and its
exceptions-section). This is very similar to calling a method in a
language like Java, where values used as arguments of a method
call get passed to its parameters when executed. Instantiating
a mission capability further means passing its context to a
capability handler, which is a component of the execution
engine. The capability handler is in charge of executing the
capability and monitoring its execution. In addition to the
internal capability context, the capability handler also uses an
external capability context of every capability, which primarily
consists of (i) the capability control and (ii) other capabilities
whose execution affects its own execution.

Technically, there is one capability handler for every actor
of a mission, who is performing activities (i.e., instantiating
capabilities). Every capability handler starts every capability
instance as a separately executing thread that is linked to its
external context to keep its execution dynamic. This linkage
is efficiently implemented via bidirectional communication
channels provided by our target execution language Go1. We
take advantage of this fundamental feature for realizing the

1https://golang.org/

Fig. 2: Our layered mission execution architecture including the abstraction
stack (left) and execution stack (right). Red arrows indicate the interactions
that must be established for the configuration of the architecture. Blue arrows
indicate online interactions such as the usage of mission capabilities via the
middle-layer-API or the compilation and execution of a mission. The execution
engine communicates with the drones via the native-drone-API.

communication that occurs during a mission (e.g., GCS-to-
drone, drone-to-drone communication, and drone-internal com-
munication where multiple running threads on (or for) the
same platform exchange data. Examples for external events that
affect the capability’s execution are subscribed signals, handled
exceptions, or simply if leashes of the capability control are
called (cf. Section III-C Capability Control).

B. Mission Specification Language

We use the Meta Programming System MPS [21] from Jet-
Brains for developing our mission specification language. MPS
is an integrated development suite that enables and supports
all aspects of developing a domain-specific language (DSL),
including its design, representation, and translation into other
languages. MPS utilizes so-called projectional editors at its
heart to define the syntax of a language, which are used by
both the developer and the user of the DSL.

In our approach, we use MPS (i) for developing our mission
language, (ii) as mission-user interface to maintain the mission
and mission capabilities, and (iii) for the translation of the
mission specification into the high-level programming language
Go. The compiled Go byte-code will eventually execute in our
execution environment.

https://golang.org/

The open-source language Go enables us to efficiently realize
concurrency that is key when translating our mission specifi-
cation into byte-code that eventually gets executed on either
different drones or the GSC. The fundamental Go features are
(i) Go-routines, which resource-efficiently spawn new threads
of execution, and (ii) bi-directional communication channels
used to pass data between executing Go-routines. Listing 1
illustrates these two features with an example function.
1 func spawnDrone (ctrl chan<-string, sensor float->

chan, string name) {
2 message := <-ctrl // receive from channel
3 sensor <- data // send into channel
4 }
5 func gcs() {
6 var controlChannels [3]string
7 var sensorChannels [3]float
8 for (int i := 0; i < 3; i++) {
9 controlChannels[i] := make(chan string)

10 sensorChannels[i] := make(chan float, 100)
11 go spawnDrone(controlChannels[i],

sensorChannels[i], "flir-drone" + i)}
12 controlChannels[0] <- "START"
13 data := <-sensorChannels[1]}

Listing 1: Go-routine spawnDrone with input ctrl and output sensor channels
(line 1). The function gcs (line 5) instantiates an unbuffered (line 9) and a
buffered channel with a capacity of 100 messages (line 10), and passes them
to spawnDrone in three iterations (line 11). Finally, data is sent to one of the
ctrl channels (line 12) and received from one of the sensor channels (line 13).

C. Mission Execution Stack

Two code translations are necessary for transforming a
mission specification into a multidrone mission execution.
Initially, the mission operator writes both missions and mission
capabilities using the MPS-Editors. The first translation is
performed automatically by MPS, which transcodes the mission
specification into Go-source code. The second translation is
then the compilation of the Go-source code into byte-code of
the target by the Go-installation of our execution environment.

The Go-infrastructure supports the integration of Go-code
into our execution environment very well by the following three
features: First, cross-compilation targets a specific hardware
architecture, and no Go runtime environment needs to be
installed on the target machines. Second, the pseudo-package
CGo enables the Go-developer to call C-code directly from any
Go-program. This is particularly significant because it eases
the interaction of Go-programs with C or C++ functions which
are widely used in drone platforms. Third, the ROS/GO-client
libraries support the development on various robotic platforms.
Two recent libraries are rosgo2 and goroslib3, which fully
implement the ROS client library requirements.

V. EXAMPLE MISSION SPECIFICATION

Listing 2 demonstrates our mission specification language
with an excerpt of the example from Section I. This specifi-
cation declares a mission named Search and Rescue (line 1)
with one PARALLEL execution block named Start Mission
(line 2), which concurrently starts the SEQUENTIAL execu-
tion of two video drones in blocks Launch Video1 (line 3) and

2https://github.com/akio/rosgo
3https://github.com/aler9/goroslib

Launch Video2 (line 9), and the sensor drone in block Ra-
diation Detection (line 23). Since Launch Video1 is declared
as sequential, its individual statements are processed one after
the other. First, video drone1 takes off to a height of 20m
(line 4). Once the drone has successfully reached this height, the
system triggers the signal Video1 Ready (line 5) for whoever is
asynchronously subscribed to this event. The drone then flies to
the location BuildingA (line 6), starts there its video streaming
activity with the StartStreaming capability (line 7), and circles
around the building in a 100m radius (line 8).
1 MISSION Search_and_Rescue:
2 PARALLEL Start_Mission:
3 SEQUENTIAL Launch_Video1:
4 video_drone1 TakeOff WITH 20m
5 SIGNAL Video1_Ready
6 video_drone1 FlyTo WITH BuildingA
7 video_drone1 StartStreaming
8 video_drone1 FlyCircle WITH center=BuildingA,

radius=100m
9 SEQUENTIAL Launch_Video2:

10 // launch 2nd video drone ...
11 ON Video2_Ready:
12 SEQUENTIAL Area_Monitoring:
13 // trigger monitoring of facility ...
14 ON Video1_Ready:
15 PARALLEL FOR
16 flir_drone1 WITH Area1 AND
17 flir_drone2 WITH Area2 AND
18 AS flir_drone WITH SearchArea:
19 SEQUENTIAL FLIR_Search:
20 flir_drone TakeOff
21 flir_drone FlyTo WITH SearchArea
22 flir_drone Search WITH SearchArea
23 SEQUENTIAL Radiation_Detection:
24 sensor_drone TakeOff
25 sensor_drone FlyToAndPatrol WITH StartPos
26 sensor_drone DetectRadiation
27 ON Radiation_Detected BY sensor_drone WITH

Location:
28 beacon_drone1 DployBeacon WITH beaconType=Rad,

target=Location
29 ON Body_Detected BY flir_drone WITH Location:
30 beacon_drone2 DployBeacon WITH beaconType=Body,

target=Location

Listing 2: Illustration of our mission specification language based on the
example scenario in Section I. Language keywords are depicted in bold
black, actors are depicted in blue, and capabilities are depicted in orange.
Words without special typeset are either parameters or identifiers. Note, that
capabilities realize a custom behavior that is specified separately elsewhere. For
example, capability FlyTo performs a standard waypoint flight, while FlyCircle
(flying along a circular trajectory) and FlyToAndPatrol (patrolling a target
location in a pattern) realize customized behaviors.

To maintain a safe distance during take off between
video drone1 and the two flir drones, the latter ones only take
off (line 14f) after the former one has reached a height of 20m
(line 5). Both flir drones perform their search for victims as
defined in the SEQUENTIAL FLIR Search-block (line 19).
Since declared within a FOR-block (line 15), the enclosed
block (line 19) is executed for each of the two concrete actors
flir drone1 and flir drone2, together with a certain Area that
is provided as an argument for each of them (lines 16 and
17). Within every execution block, the actor for which the
block currently executes is referred to using the alias flir drone
(line 18). Note that the FOR-block executes the statements
of its enclosed block sequentially, but the blocks themselves
get started in parallel, because the FOR-block it declared

https://github.com/akio/rosgo
https://github.com/aler9/goroslib

as PARALLEL (line 15). Radiation Detection (line 23) is
the third parallel Start Mission block where the sensor drone
processes its execution blocks sequentially. The capabilities
Search and DetectRadiation signal the events Body Detected
and Radiation Detected together with the target location, when
a body or a radiation has been detected respectively. Dedicated
event handlers for these events (lines 27 and 29) trigger the
deployment of appropriate beacons by beacon drones (lines
28 and 30).

The corresponding capability DployBeacon is illustrated in
Listing 3. Its signature (line 1) specifies that the capability is
suited for a single drone with the arguments for the beacon
type and its offload position. While no dedicated REQUIRE-
MENTS are defined (line 2) and the beacon type is set to Body
if no corresponding argument has been set by the caller (line 3),
the PERFORM-block defines the process of loading a beacon
of the specified type from the beacon inventory (cf. Figure 1)
and deploying it at the given position (lines 5-12). Note that
the FlyTo-statements in lines 6 and 8 refer to the capability
named FlyTo, while line 11 makes a call to the middle-layer-
API function FlyToPosition(Position). If any of the involved
statements throw exceptions that indicate a critical battery level
or a connection loss, corresponding handlers are defined in lines
14 and 16.
1 CAPABILITY DployBeacon BY drone WITH Type,Position:
2 REQUIREMENTS:
3 DEFAULTS: type:Body
4 PERFORM:
5 IF type:Body
6 drone FlyTo Body_Beacon_Inventory
7 IF type:Radiation
8 drone FlyTo Radio_Beacon_Inventory
9 drone.DescentTo(3m)

10 drone.LoadBeacon()
11 drone.FlyToPosition(Position)
12 drone.Offload()
13 EXCEPTIONS:
14 ON EXCEPTION BatteryCritical:
15 // handle critical battery level ...
16 ON EXCEPTION ConnectionLost:
17 // handle a connection loss ...

Listing 3: Illustration of a mission capability from the mission example listing.

VI. CONCLUSION

In this paper, we have introduced a specification language
and an execution architecture for multidrone missions aim-
ing at domain-independence, ease of use, and expandability.
Key features of our approach are mission capabilities, which
compose low-level drone functionalities into mission building
blocks, and a layered execution architecture, which uses Go
as intermediate language. Ongoing work focuses on finalizing
the execution architecture development and integration in the
simulation environment AirSim [22]. Future work includes a
performance study of our approach, an integration with ROS-
based drones, deploying our approach in a multidrone case
study (cf. https://uav.aau.at), and conducting user studies.

REFERENCES

[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned

Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Re-
search Challenges,” IEEE Access, vol. 7, pp. 48 572–48 634, 2019.

[2] J. Scherer, B. Rinner, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre,
A. Khan, V. Vukadinovic, C. Bettstetter, and H. Hellwagner, “An Au-
tonomous Multi-UAV System for Search and Rescue,” in Proceedings
of the First Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications for Civilian Use (DroNet), 2015, pp. 33–38.

[3] E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter,
“Drone networks: Communications, coordination, and sensing,” Ad Hoc
Networks, vol. 68, pp. 1–15, January 2018.

[4] J. Scherer and B. Rinner, “Multi-Robot Persistent Surveillance With
Connectivity Constraints,” IEEE Access, vol. 8, pp. 15 093–15 109, 2020.

[5] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh, “Programming
Micro-Aerial Vehicle Swarms with Karma,” in Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, 2011, pp.
121–134.

[6] L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi, “Team-Level
Programming of Drone Sensor Networks,” in Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems, 2014, pp. 177–
190.

[7] D. Dedousis and V. Kalogeraki, “A Framework for Programming a Swarm
of UAVs,” in Proceedings of the 11th PErvasive Technologies Related to
Assistive Environments Conference, 2018, pp. 5–12.

[8] C. Pinciroli and G. Beltrame, “Buzz: An extensible programming lan-
guage for heterogeneous swarm robotics,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2016, pp.
3794–3800.

[9] M. Molina, A. Diaz-Moreno, D. Palacios, R. A. Suarez-Fernandez, J. L.
Sanchez-Lopez, C. Sampedro, H. Bavle, and P. Campoy, “Specifying
Complex Missions for Aerial Robotics in Dynamic Environments,” in
Proceedings of the International Micro Air Vehicle Conference and
Competition, 2016, pp. 1–8.

[10] D. C. Silva, P. H. Abreu, L. P. Reis, and E. Oliveira, “Development
of a flexible language for mission description for multi-robot missions,”
Information Sciences, vol. 288, pp. 27–44, December 2014.

[11] A. Rutle, J. Backer, K. Foldøy, and R. T. Bye, “CommonLang: a DSL for
defining robot tasks,” in CEUR Workshop Proceedings, vol. 2245, 2018,
pp. 433–452.

[12] S. Garcı́a, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “High-
Level Mission Specification for Multiple Robots,” in Proceedings of the
12th ACM SIGPLAN International Conference on Software Language
Engineering, 2019, pp. 127–140.

[13] B. Schwartz, L. Nägele, A. Angerer, and B. MacDonald, “Towards a
graphical language for quadrotor mission,” in Proceedings of the 5th
International Workshop on Domain-Specific Languages and models for
ROBotic systems, 2014, pp. 1–4.

[14] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “RobotML,
a Domain-Specific Language to Design, Simulate and Deploy Robotic
Applications,” in Proceedings of the International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots, 2012, pp.
149–160.

[15] P. Doherty and J. Kvarnström, Temporal Action Logic. Elsevier, 2008,
ch. 18.

[16] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D.
Campbell, “A Language for Large Ensembles of Independently Execut-
ing Nodes,” in Proceedings of the International Conference on Logic
Programming, 2009, pp. 265–280.

[17] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“FLYAQ: Enabling Non-expert Users to Specify and Generate Missions
of Autonomous Multicopters,” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2015, pp. 801–806.

[18] J. A. Besada, L. Bergesio, I. Campana, D. Vaquero-Melchor, J. Lopez-
Araquistain, A. M. Bernardos, and J. R. Casar, “Drone Mission Definition
and Implementation for Automated Infrastructure Inspection Using Air-
borne Sensors ,” Sensors, vol. 18, pp. 1–29, 2018.

[19] A. Lamping, J. Ouwerkerk, N. Stockton, K. Cohen, M. Kumar, and
D. W. Casbeer, “FlyMASTER: Multi-UAV Control and Supervision with
ROS,” in Proceedings of the 2018 Aviation Technology, Integration, and
Operations Conference, 2018.

[20] “ArduPilot,” https://ardupilot.org/planner/, accessed December 2020.
[21] “MPS - Meta Programming System,” https://www.jetbrains.com/mps/,

accessed December 2020.
[22] “AirSim,” https://github.com/microsoft/AirSim, accessed December 2020.

https://uav.aau.at
https://ardupilot.org/planner/
https://www.jetbrains.com/mps/
https://github.com/microsoft/AirSim

	Introduction
	State of the Art
	Mission Specification and Execution
	Requirements
	Overview
	Specification Language
	Execution Architecture

	Implementation
	Mission Capabilities
	Mission Specification Language
	Mission Execution Stack

	Example Mission Specification
	Conclusion
	References

