
Time and Energy Optimized Trajectory Generation for Multi-Agent
Constellation Changes

Paul Ladinig, Bernhard Rinner and Stephan Weiss

Abstract— Planning the simultaneous movement of multiple
agents represents a challenging coordination problem, and
ideally safety and efficiency are jointly addressed. This paper
introduces a planning algorithm for fast and energy-efficient
trajectories with reduced collision potential from a start to
an end constellation. This new approach combines trajectory
approximation based on model predictive control, collision
avoidance with potential fields, and flight energy optimization
with minimum snap trajectories. Our approach results in un-
precedented transition times and success rates with less energy
consumption, as shown in simulation and real experiments with
16 drones.

I. INTRODUCTION AND RELATED WORK

Multi-robot systems are typically represented as a Multi-
Agent System (MAS), and the coordination of the individual
agents is a fundamental topic in MAS research. Coordination
is thus essential for many multi-robot applications including
logistics [1], [2], aerial monitoring [3], and surveillance [4].
Planning the agents’ movement represents a challenging
coordination problem where safety and efficiency should
ideally be jointly addressed. This paper contributes to this
specific problem and proposes a planning algorithm for fast,
energy-efficient, and simultaneous trajectories with reduced
collision potential from a start to an end constellation for
large teams of agents. The innovation of our approach lies
in the merging of i) trajectory approximation based on model
predictive control, ii) collision avoidance with potential
fields, and iii) flight energy optimization with minimum snap
trajectories. As depicted in Figure 1, we extensively evaluate
this approach in simulation and demonstrate the feasibility
in experiments with constellation changes of 16 drones.

There is various related work on multi-agent constellation
changes. Trajectories can be generated using Potential Field
(PF) approaches [5], [6] where the computation effort scales
well with the number of agents while keeping potential
collisions low. However, they experience problems with
deadlocks and, to the best of our knowledge, PF methods
have not been used for time- or energy-optimized trajectory
planning. Bio-inspired approaches [7], on the other hand,
support problem-solving in non-convex environments. Ex-
amples include genetic algorithms [8] or particle swarm
optimization [9], but their high computational complexity

All authors are with the University of Klagenfurt, Austria (drone-
hub Klagenfurt: uav.aau.at). Paul Ladinig and Stephan Weiss are
with the Control of Networked Systems Group, and Bernhard Rinner
is with the Institute of Networked and Embedded Systems. email:
{firstname.lastname}@aau.at. The authors thank Michał Barciś for his
support with the experiments.

This work was supported by the EU-H2020 project BUGWRIGHT2 (GA
871260) and the doctoral school KPK-NAV of the University of Klagenfurt.

Fig. 1: Constellation changes of 16 agents in 3D space. Dots
and ellipses represent the start and end constellation, solid lines
the tracked trajectories from real flights (top). Crazyflie drones
executing the trajectories in our dronehall (bottom).

limits trajectory planning for small to medium-sized teams of
agents. An alternative approach is to cast trajectory planning
as an optimization problem and use established solvers
to compute optimal solutions. For example, the Sequential
Convex Programming (SCP) approach [10], [11] optimizes
for trajectory length and/or control effort but also faces
problems with computation time and potential collisions
for a large number of agents. These issues are addressed
in [12] by generating computationally fast and guaranteed
feasible trajectories using grid- and optimization-based ap-
proaches. However, this method yields suboptimal solutions
with respect to path lengths and thus transition times. Luis
et al. [13] propose to use Model Predictive Control (MPC)
for trajectory planning. They show that a high success rate
with a moderate computational complexity as compared to

uav.aau.at

the previous methods is possible. Furthermore, this approach
includes a dynamic model to generate trajectories specifically
designed for their robotic platform. Mellinger et al. [14]
exploit the agent’s dynamics by minimizing the snap of
a trajectory resulting in a trajectory generation specifically
designed for aggressive drone flights. However, this method
is restricted to individual trajectories and is not adapted to
collective planning.

Our approach to collision-aware, fast, yet energy-efficient
simultaneous trajectory generation for large teams of agents
leverages the trajectory approximation in [13] with im-
proved performance through our PF extension and the energy
optimization in [14] to achieve unprecedented transition
times and success rate with less energy. The success rate
is defined as the ratio between collision-free and overall
examined constellation changes. We use MPC to compute
initial trajectories for coarse constellation changes and apply
PF to significantly reduce collisions which would occur
due to discretization in [13]. We then specify elliptically
shaped spatial constraints around these initial trajectories and
apply minimum snap optimization for computing the final
trajectories within these volume constraints around the initial
trajectories. Our approach results in simultaneous, fast, and
energy-efficient drone movements from a start to an end
constellation. The contribution includes i) a novel frame-
work using MPC, PF-based collision avoidance, and energy-
optimized trajectory generation, ii) a simulation study which
shows a significant reduction of the energy consumption as
compared to previous work while at the same time achieving
faster constellation changes, and iii) experiments with real
drones demonstrating the feasibility of our approach and
validating our simulation results.

II. PROBLEM STATEMENT

Figure 1 depicts the problem under study. For a given team
of N agents, we search for trajectories providing simultane-
ous, collision-free, fast, and energy-efficient transitions from
a start to an end constellation. We adopt the notation of [13]
for the formal problem specification.

A. Agent Model

A group of N agents is located at positions pi for each
agent i∈ 1, . . . ,N in the Cartesian coordinate system where a
constellation is defined as static and collision-free positions
of all N agents. The position of agent i at timestep k is
denoted by pi [k] ∈R3. Each agent’s dynamics are described
by their velocity vi [k] and acceleration ai [k]. These dynamics
are modelled as follows

pi [k+1] = pi [k]+hvi [k]+
h2

2
ai [k] (1)

vi [k+1] = vi [k]+hai [k] (2)

using a discretization step h and obeying the physical limits:

pmin ≤ pi [k]≤ pmax

vmin ≤ vi [k]≤ vmax

amin ≤ ai [k]≤ amax.

(3)

The agents’ workspace is limited to a given flight volume
specified by a lower bound pmin and an upper bound pmax.
The agents’ velocity and acceleration are bounded as well.
We choose the bounds vmax = −vmin = 5m/s and amax =
−amin = 1m/s2 in each axis. Furthermore, we assign a start
position pstart and an end position pend to each agent.

B. Collision Constraints

We adopt the collision constraints from [13] for main-
taining a minimum distance among all agents. This collision
constraint is formulated as∥∥∥Θ

−1 (pi [k]−p j [k]
)∥∥∥

2
≥ rmin + εi j, ∀k, i, j | i 6= j (4)

where the scaling matrix Θ = diag(a,b,c) models an ellip-
soid around each agent. The parameters are set to a = b = 1
and c = 2 to increase the vertical distance between agents to
avoid downwash interference.

During trajectory generation it may happen that a fixed
spatial constraint based on rmin cannot be met. Therefore, the
collision constraint in Eq. 4 is relaxed by εi j with −εmax ≤
εi j ≤ 0 to avoid infeasible trajectories. εi j is initially set to
zero and is decreased if necessary.

C. Constellation Change

Based on the agent model in Eqs. 1 and 2 we search for
trajectories rT that transfer agents from their start positions
pstart to their end positions pend and fulfill the physical limit
constraints in Eq. 3 and the collision constraint in Eq. 4.
The objective of the constellation change is to minimize the
transition time for all agents and to minimize the agents’
energy consumption during the transition.

III. OPTIMIZED TRAJECTORY GENERATION

Our trajectory generation approach consists of two parts.
First, we calculate initial trajectories between the start and
end constellation by extending the MPC method [13] with
PF to further improve the success rate. Second, we optimize
these initial trajectories to better exploit the agent’s dynamics
by fitting snap-minimized trajectories [14] based on dynamic
and volumetric constraints that are derived from the MPC
solution. In the following, we mathematically describe our
approach and present the pseudo code in Algorithms 1-3.

A. Model Predictive Control

We define the optimization function as quadratic program
(QP) based on the agent model in Eqs. 1 and 2:

min
Ui

UT
i HUi + fT Ui, ∀i

s.t. AUi ≤ b
(5)

The cost function described by H and f governs the transition
of each agent. It penalizes the spatial displacement of agents
to their end position, their absolute control effort and their
control variation during their transition. Thus, agents are
smoothly directed to the end constellation. The physical limit
constraint Eq. 3 and the collision avoidance constraint Eq. 4
are incorporated using the matrices A and b.

The trajectories are generated by iteratively solving the
QP and obtaining the output U which provides the predicted
accelerations over a predefined time horizon with length K.
All predicted accelerations are propagated using Eqs. 1 and
2 to obtain the predicted future positions which are shared
amongst other agents. Hence, collisions at iteration k can
be avoided based on the predicted future positions from
iteration k−1. In each iteration, the first predicted positions
and velocities are stored as the latest state of the trajectories.
This is repeated until either the end constellation is reached
or no feasible solution can be found.

B. Potential Fields

To improve the success rate and computation time, [13]
uses so-called soft constraints for trajectory generation. How-
ever, these constraints can lead to partial violations of the
collision constraint and subsequently to collisions. Therefore
we suggest avoiding these collisions by using PF. To avoid
collisions at a propagation step in Eqs. 1 and 2 we simply
assess whether the collision constraint in Eq. 4 holds true for
the newly propagated positions pi [k+1] of all agents i. If a
collision is detected, we execute the following PF method.

Inspired by [15], we define a force Fnet
1 as:

Fnet
(
p [k] , i

)
= Fatt

(
pi [k]

)
− 1

N

N

∑
j=1,j6=i

Frep
(
pi [k] ,p j [k]

)
(6)

The force Fnet determines the position change at time step
k. Here, the attractive force Fatt directs agents to their end
positions, and the repulsive force Frep prevents collisions
with other agents:

Fatt
(
pi [k]

)
=

piend −pi [k]∥∥piend −pi [k]
∥∥

2

Frep
(
pi [k] ,p j [k]

)
=

p j [k]−pi [k]∥∥p j [k]−pi [k]− rmin− εmax
∥∥2

2

(7)

Note that we have to substitute p j [k] by p j [k+1] if the
position update at time k is calculated for agent j before
agent i. Using the PF method in a collision scenario changes
the position and velocity propagation into[

pi [k+1]
vi [k+1]

]
=

[
pi [k]

−vi [k]

]
+

[
Fnet

(
p [k] , i

)
2Fnet

(
p [k] , i

)] . (8)

The velocity propagation is derived by rewriting Eq. 1 as
ai [k] = 2

(
pi [k+1]−pi [k]−vi [k]

)
using h = 1 and inserting

it in Eq. 2. Furthermore, we choose a maximum force
value Fmax in order to limit the position update pi [k+1].
The resulting force Fnet is scaled such that the inequality
‖Fnet‖2 ≤ Fmax holds true.

The state update with Eq. 8 essentially replaces Eqs. 1
and 2 in case of detected collisions. Afterward, we share
the existing K−1 predicted states with the other agents and
continue computing the trajectory using the MPC algorithm.

1In this formulation, the forces Fnet, Fatt and Frep correspond to spatial
displacements and not physical forces.

C. Minimum Snap Trajectories

Once the initial trajectory generation using MPC and PF is
completed, we continue with its refinement. We first explain
the generation of trajectories using snap minimization and
then describe how to generate snap-minimized trajectories
within the dynamic and volumetric constraints derived from
the initial trajectories.

As proposed by [14], a trajectory riT (t) =[
xiT (t), yiT (t), ziT (t)

]T can be defined as m piecewise
polynomial functions of order n.

riT (t) =


∑

n
w=0 riT w1tw t0 ≤ t < t1

∑
n
w=0 riT w2tw t1 ≤ t < t2

...
∑

n
w=0 riT wmtw tm−1 ≤ t ≤ tm

(9)

Here, m represents the number of all polynomials within a
trajectory. We choose n = 7 to generate smooth trajectories
down to snap. The polynomials in rT (t) are calculated by
solving the optimization function

fiT = min
∫ tm

t0

∥∥∥∥∥dkr riT
dtkr

∥∥∥∥∥
2

2

dt

s.t.
dpriT
dt p

∣∣∣∣
t=t j

= 0, j = 0,m; p = 1, . . . ,kr

(10)

as QP. For quadrotor drones, [14] proposes to minimize the
integral of the square of the norm of the snap and therefore
kr = 4. Note, that this parameter depends on the physical
platform and can be adapted to fit other robotic hardware.
The following constraints are defined for the optimization:
• All derivatives are set to zero at the start and the end

of a trajectory.
• Acceleration and velocity limits are defined according

to Eq. 3.
• The third derivative of riT (t) must be differentiable.
• Each trajectory must be located within a spatio-temporal

volume derived from the MPC-PF trajectories.
The use of snap-minimized trajectories provides two ad-

vantages: First because the actuation of quadrotors is alge-
braically related to the snap, the exploitation of their dynam-
ics is precisely possible. This allows for aggressive flight
maneuvers. Second, minimizing the snap directly results in
energy minimization (cf. [16]).

D. Volume Constraints

We finally describe the trajectory generation by exploit-
ing volume constraints which can be specified as (inspired
by [14])

pi [k]−∆pci [k]≤ riT (t)
∣∣
t=hk ≤ pi [k]+∆pci [k]. (11)

At the discrete time step k and the continuous time t = hk we
constrain the trajectory riT (t) to be located within a volume
2∆pci [k] around the position pi [k]. In order to generate the
volume for agent i at time step k, we first calculate the
distance rn[k] to the nearest neighbor jn

Fig. 2: 2D visualization of the volume constraints i.e. rn[k] at
selected time steps (translucent circles) and initial (dashed lines) and
snap-minimized (solid lines) trajectories. Black circles represent the
volume’s center at different time steps. These volume constraints
result in energy-efficient evasive actions during snap minimization.

rn[k] =
∥∥∥Θ
−1 (pi [k]−p jn [k]

)∥∥∥
2
. (12)

We then obtain ∆pci using rn and subtracting the smallest
allowed distance among the agents to provide a safety
distance

∆pci [k] =
rn[k]− rmin + εmax

2
13×1. (13)

The division by two ensures that the volume is spanned
around the center pi [k]. Finally, the optimization function
is achieved by incorporating Eq. 11 into Eq. 10. Note that
the trajectories must lie within the flight volumes specified
by Eq. 3.

E. Algorithm

Algorithm 1 describes our Snap-Optimized MPC approach
with Potential-Field extension (SOMPF). The algorithm
starts with initializing the trajectories (line 3) as straight lines
between the start and end constellation. The predicted future
positions are stored in Π, and each agent’s state is stored
in x =

[
pT vT

]T . During the while loop (lines 5-20), the
trajectories are iteratively generated until all end positions
are reached or a maximum number of iterations kmax is
reached. Here, the notation ˆ(·)

[
k|kt
]

refers to the prediction
of (·) [k+ kt] based on the available information at time kt .
The parameter k∈ {0, . . . ,K−1} denotes the prediction steps
of the prediction horizon with length K.

The QP in Eq. 5 is solved based on the current state, the
previous acceleration and the future predictions (line 7). It
outputs the predicted accelerations over the time horizon. If
the QP is feasible, the accelerations are propagated using
Eqs. 1 and 2 and the result is stored in Π (lines 9-10). If a
collision is detected, we apply the PF method (Algorithm 2)
to calculate the future state (line 12). Otherwise, the predicted
state is stored (line 14). Once the end constellation is reached
(line 18), all trajectories are scaled such that the dynamic
limits in Eq. 3 are reached but not exceeded (line 22). This
decreases the transition times. The scaled trajectories are then
refined with Algorithm 3 (line 23). Finally, if all trajectories
are collision-free, the trajectory is returned.

Algorithm 2 executes the state update using the PF
method. This algorithm receives the current state x[kt] of all

Algorithm 1 SOMPF trajectory generation

1: Input: Start pstart and end position pend
2: Output: Position trajectory r(t)
3:
[
Π,x [0]

]
← InitAllPredicitions(pstart,pend)

4: kt ← 0,AtGoal← false
5: while not AtGoal and kt < kmax do
6: for agent i = 1, ...,N do
7: âi[k|kt]← Build&SolveQP

(
xi[kt],ai[kt −1],Π

)
8: if QP f easible then
9: x̂i[k+1|kt]← GetStates

(
xi[kt], âi[k|kt]

)
10: Πi← p̂i[k+1|kt]
11: if CollisionCheck

(
x̂i[1|kt]

)
== true then

12: xi[kt +1],ai[kt]← PF
(
x[kt],x[kt +1]

)
13: else
14: xi[kt +1],ai[kt]← x̂i[1|kt], âi[0|kt]
15: end if
16: end if
17: end for
18: AtGoal← CheckGoal

(
pi[kt +1],pend

)
19: kt ← kt +1
20: end while
21: if AtGoal then
22: [p,v,a,hscaled]← ScaleMPC(p,v,a,‖vmax‖ ,‖amax‖)
23: r(t), tm←MinSnap(p,v,a,pmin,pmax,hscaled,h)
24: if CollisionCheck

(
r(t)
)
== true then

25: r(t)← /0
26: end if
27: end if
28: return r(t)

agents and, if already computed, the available states x[kt +1]
of the next time step. The states at time step kt +1 are needed
considering the already successful state generation of other
agents.

If agent i encounters a collision with another agent, the
repulsive force Finet is computed based on Eq. 6 with the
position information at time step kt or kt + 1, respectively
(line 3). The resulting force Finet is limited (lines 4-6) and
then used to calculate the next state xi[kt +1] with Eq. 8 (line
7). Finally, the acceleration is computed by the difference of
the velocity vi at time step kt and kt + 1 (line 8), and the
new state and acceleration are returned (line 9).

Algorithm 2 Potential field propagation

1: Input: Current positions p and available accelerations
a[kt]

2: Output: New state xi[kt +1] and acceleration ai[kt]
3: Fnet← CalcForce(p, i)
4: if ‖Fnet‖> Fmax then
5: Fnet← LimitToMaxValue(Fnet,Fmax)
6: end if
7: xi[kt +1]← GetState

(
xi[kt], âi[0|kt],Fnet

)
8: ai[kt]← vi[kt +1]−vi[kt]
9: return xi[kt +1],ai[kt]

Algorithm 3 optimizes the trajectories generated by MPC
and PF with respect to their snap. It starts with the generation
of the bounding volumes ∆pc for each agent at all time
steps (line 3) and then iteratively refines the trajectories
lowering the transition times (lines 5-9). The initial transition
time is given by the MPC solution. In each iteration, the
scaled time step hscaled from the previous iteration is used
for the snap optimization by solving Eq. 10 (line 7). The
resulting trajectories are then scaled to the dynamic limits
for obtaining faster transition times (line 8). The iterations
are repeated until no further time reduction is achieved or
the iteration threshold lmax is reached.

Algorithm 3 Calculate minimum snap trajectory

1: Input: Positions p, velocity v and acceleration a tra-
jectories; position boundaries pmin, pmax; original h and
scaled hscaled time step

2: Output: Position trajectory r(t)
3: ∆pc← GenerateVolumina(p,pmin,pmax)
4: ls← 0
5: while (hscaled < h)and (ls ≤ lmax) do
6: h← hscaled
7: r(t)← FitMinSnapTrajectories(p,∆pc,h)
8: [r(t),hscaled]←ScaleSOMPF

(
r(t),‖vmax‖ ,‖amax‖ ,h

)
9: ls← ls +1

10: end while
11: return r(t)

IV. EVALUATION

We evaluate the performance of our SOMPF trajectory
generation method compared to the MPC approach with
a simulation study. We have implemented Algorithms 1-3
in MATLAB R2019b and executed all simulations on an
Intel Core PC with 8 GB RAM running at 3.40 GHz. The
computation times are measured with the cputime function,
and the QPs are solved with the quadprog function. For a fair
comparison with [13], we used a similar parameter setting,
i.e., h = 0.2, rmin = 0.35m, εmax = 0.05m and kmax = 1000.
Furthermore, we set Fmax = 0.02m so that the position update
is kept small during the position update by the PF method.

A. Density-Dependent Performance

We run the MPC of [13] and our SOMPF algorithm in
a fixed volume of 4m3 and vary the team size from 4 to
24 in multiple of 4 agents, thus varying the agent density
from 1 to 6 agents per m3. Fig. 3 compares the following
performance parameters of our simulation: the transition
time, i.e., the mean movement time from a start to an end
point, the mean computation time, the normalized trajectory
length, and the optimization success, i.e., the ratio between
the constellation changes with feasible optimization and all
considered constellation changes. Note that the update of
hscaled in SOMPF with Imax = 4 (green plots) is slightly
modified, i.e., hscaled is lowered by 10% at each iteration.

Fig. 3a shows that the transition times of the MPC method
is reduced for all densities using the proposed method.

1 2 3 4 5 6

Workspace density [agents/m
3
]

0

5

10

15

T
ra

n
s
it
io

n
 t
im

e
 [
s
]

MPC

SOMPF, l
max

=2

SOMPF, l
max

=4

(a)

1 2 3 4 5 6

Workspace density [agents/m
3
]

0

100

200

300

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
] MPC

SOMPF, l
max

=2

SOMPF, l
max

=4

(b)

1 2 3 4 5 6

Workspace density [agents/m
3
]

0

0.5

1

1.5

2

T
ra

je
c
to

ry
 l
e
n
g
th

 [
m

]

MPC

SOMPF, l
max

=2

SOMPF, l
max

=4

(c)

1 2 3 4 5 6

Workspace density [agents/m
3
]

90

92

94

96

98

100

O
p
ti
m

iz
a
ti
o
n
 s

u
c
c
e
s
s
 [
%

]

MPC

SOMPF, l
max

=2

(d)

Fig. 3: Comparison of the original MPC algorithm with our
SOMPF method. For each workspace density we perform 100 sim-
ulations and determine (a) the transition times, (b) the computation
times, (c) the trajectory lengths, and (d) the total optimization
success. For graphs (a)-(c), the mean and standard deviation values
are plotted, and SOMPF is executed with at most 2 or 4 optimization
cycles, respectively. All generated trajectories are collision-free.

The transition time is reduced by up to 18% at density 6.
Fig. 3b depicts that the improvement of the transition times
comes with increased computation time. However, this figure
indicates that MPC and SOMPF lie in the same order of
computational complexity. The computation time increases
with the maximum numbers of optimization cycles lmax.
As Fig. 4b suggests, lmax > 2 has little performance gain
in practice. Furthermore, our method yields very similar
trajectory lengths and optimization successes compared to
the MPC method, see Figs. 3c and 3d. The small decrease
in the optimization success of 4% at a density of 6 is due to
infeasible constraints in Eq. 10 which result from the MPC
solution. Collisions do not appear throughout all densities.

Fig. 4a depicts the energy cost ratio of the trajectories
generated with MPC and SOMPF. We define the energy cost
ratio as the quotient of the average trajectory costs of MPC
(fT

∣∣∣∆pc = 0) and the average costs of SOMPF (fT) with
lmax = 2 (cf. Eq. 10). By setting ∆pc = 0, we force the
trajectories to lie exactly on the given points of the MPC
approach. We show that SOMPF reduces the costs by at least
a factor of 40 compared to the MPC approach. Furthermore,
we notice that the cost saving has its peak at a density of
4. Our explanation for this is as follows: At low densities,
the task of generating trajectories is less complex due to
the reduced risk of collision. This allows MPC to generate
smoother and hence energy-efficient trajectories. At high
densities, the volume constraints are tighter on average, and
the trajectories generated by Eq. 10 are therefore spatially
closer to the MPC solution. Fig. 4b shows the improvement
of the transition time as a function of the maximum number

1 2 3 4 5 6

Workspace density [agents/m
3
]

0

20

40

60

80
E

n
e
rg

y
 c

o
s
t
ra

ti
o

(a)

0 1 2 3 4 5 6 7

Max iterations l
max

0

5

10

T
ra

n
s
it
io

n
 t
im

e
 [
s
]

density 1

density 2

density 3

density 4

density 5

density 6

(b)

Fig. 4: (a) Energy cost ratio of trajectories generated by MPC and
SOMPF. (b) Transition times for different densities and maximum
number of optimization cycles lmax. Transition times can be hardly
improved with more than 4 cycles.

10 50 100 150 200

Number of agents

0

20

40

60

80

100

S
u
c
c
e
s
s
 r

a
te

 [
%

]

MPC

MPC-PF

SOMPF

(a)

10 50 100 150 200

Number of agents

0

400

800

1200

1600

2000

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
] MPC

MPC-PF

SOMPF

(b)

Fig. 5: Success rate and computation time dependent on the number
of agents with fixed density of 1 agent/m3. SOMPF uses at most 2
optimization cycles (lmax = 2).

of optimization cycles.

B. Success Rate and Computation Time

Fig. 5 plots the success rate and computation as a func-
tion of the team size. In these simulation scenarios, we
keep the density fixed at 1 agent/m3 and vary the number
of agents from 10 to 200. We compare three trajectory
generation approaches: the MPC approach (red line), the
MPC approach including our PF extension (green line), and
our SOMPF approach (MPC with PF and minimum snap
refinement, blue line). Because of the collision susceptibility
of the MPC method with higher numbers of agents, our PF
based extension reaches a noticeably improved success rate
(cf. Fig 5a). Similarly, SOMPF outperforms the MPC success
rate but is worse than MPC-PF. Although our algorithms
show improved success rates, we cannot guarantee feasibility.
Infeasible trajectory generations happen when individual op-
timization problems in Eqs. 5 and 10 cannot be solved within
the given constraints. Furthermore, trajectories that cannot be
generated within kmax iterations are also declared infeasible.
Fig. 5b compares computation time of the three approaches.
The PF extension does hardly increase the computation time
of MPC. On the other hand, SOMPF shows a slight increase
in computation time which follows a similar trend.

V. PRACTICAL EXPERIMENTS

This section summarizes results from our experiments with
Crazyflie 2.0 drone platforms. All experiments are conducted
in our dronehall, and an Optitrack motion capture system is

Fig. 6: Visualization of 5 selected simulated (dashed line) and
experimentally measured (solid Line) trajectories. Dots denote start
positions and ellipses show end positions.

used for precise position measurements of the drones. We
apply the provided control system [17] for executing the
computed trajectories. We have implemented a constellation
change of 16 drones with rmin = 0.4m arranged in the
quadratic shape of 4m×4m at a fixed altitude.

Fig. 6 compares selected simulated and measured trajecto-
ries. The average displacement error between simulation and
real experiment is as small as 7.43cm with a standard de-
viation of 0.02cm, whereas the maximum error is 20.27cm.
The constellation change takes 8.97s in simulation and 8.79s
in practice and achieves an energy cost ratio of 240.03. The
computation time is 107.44s.

VI. CONCLUSION

We present an energy-efficient trajectory generation for
fast constellation changes in multi-agent systems. Our Snap-
Optimized Model-predictive control approach with Potential-
Field extension (SOMPF) achieves, compared to state of the
art, i) faster constellation transitions (up to 18% faster), ii) at
lower energy costs (at least 40 times lower cost terms), and
iii) improved success rate for large swarms. Our approach
requires slightly larger computation times while residing in
the same order of computational complexity.

The improvement in the success rate for larger swarms
is due to our extension of including a PF approach upon
collision detection in the original MPC approach. The drastic
energy reduction arises from our approach to include a snap-
minimization step with volume constraints to best leverage
the vehicle dynamics while at the same time maintaining
minimal distances to other agents.

The presented simulations yield statistical relevant evalu-
ation data to do fair comparisons against state of the art. In
addition, the real experiments with 16 real crazyflie platforms
changing constellations in our dronehall demonstrate the
feasibility of our concept in real-world setups.

REFERENCES

[1] K. Gao, J. Xin, H. Cheng, D. Liu, and J. Li, “Multi-mobile Robot Au-
tonomous Navigation System for Intelligent Logistics,” in Proceedings
of the Chinese Automation Congress, 2018, pp. 2603–2609.

[2] K. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and Optimiza-
tion of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent
Delivery Platform,” IEEE Access, vol. 7, pp. 15 804–15 831, 2019.

[3] V. Mersheeva and G. Friedrich, “Multi-UAV Monitoring with Priorities
and Limited Energy Resources,” in Proceedings of the Twenty-Fifth
International Conference on International Conference on Automated
Planning and Scheduling, 2015, pp. 347–355.

[4] J. Scherer and B. Rinner, “Multi-uav surveillance with minimum
information idleness and latency constraints,” IEEE Robotics and
Automation Letters, vol. 5, pp. 4812–4819, 2020.

[5] S. Ge and Y. Cui, “Dynamic Motion Planning for Mobile Robots
Using Potential Field Method,” Autonomous Robots, vol. 13, no. 3,
pp. 207–222, 2002.

[6] Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, “UAV path
planning using artificial potential field method updated by optimal
control theory,” International Journal of Systems Science, vol. 47,
no. 6, pp. 1407–1420, 2016.

[7] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of
Robot 3D Path Planning Algorithms,” Journal of Control Science and
Engineering, vol. 2016, 2016.

[8] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile
robots with improved genetic algorithm,” Computers & Electrical
Engineering, vol. 38, no. 6, pp. 1564–1572, 2012.

[9] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Pro-

ceedings of IEEE International Conference on Neural Networks, vol. 4,
1995, pp. 1942–1948.

[10] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 1917–1922.

[11] Y. Chen, M. Cutler, and J. How, “Decoupled Multiagent Path Planning
via Incremental Sequential Convex Programming,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2015,
pp. 5954–5961.

[12] J. Park, J. Kim, I. Jang, and J. Kim, “Efficient multi-agent tra-
jectory planning with feasibility guarantee using relative bernstein
polynomial,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2020, pp. 434–440.

[13] C. Luis and A. Schoellig, “Trajectory Generation for Multiagent Point-
To-Point Transitions via Distributed Model Predictive Control,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382, 2019.

[14] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation
and Control for Quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2011, pp. 2520–2525.

[15] K. P. O’Keeffe, H. Hong, and S. H. Strogatz, “Oscillators that sync
and swarm,” Nature communications, vol. 8, no. 1, pp. 1–13, 2017.

[16] N. Kreciglowa, K. Karydis, and V. Kumar, “Energy Efficiency of
Trajectory Generation Methods for Stop-and-Go Aerial Robot Navi-
gation,” in Proceedings of the International Conference on Unmanned
Aircraft Systems, 2017, pp. 656–662.

[17] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 3299–3304, software
available at https://github.com/USC-ACTLab/crazyswarm.

https://github.com/USC-ACTLab/crazyswarm

	Introduction and Related Work
	Problem Statement
	Agent Model
	Collision Constraints
	Constellation Change

	Optimized Trajectory Generation
	Model Predictive Control
	Potential Fields
	Minimum Snap Trajectories
	Volume Constraints
	Algorithm

	Evaluation
	Density-Dependent Performance
	Success Rate and Computation Time

	Practical Experiments
	Conclusion
	References

