UNIVERSITÄT KLAGENFURT

Institute of Networked and Embedded Systems

How to Act as Team Multi-Robot Coordination

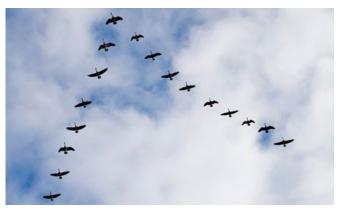
Bernhard Rinner AI-DLDA Summer School, July 7, 2022

0

© D. Waschnig

Acknowledgements

Pervasive Computing group
 <u>https://www.bernhardrinner.com</u>


• Dronehub Klagenfurt <u>https://uav.aau.at</u>

Team Behavior of Multiple Robots

- Coordinate actions in space and time to achieve common goal
- Key coordination tasks include
 - Sharing of knowledge
 - Joint decision making
 - Resource allocation
- Complex problem with huge design space
 - Various constraints: energy, communication, deadlines, payloads etc.
 - Multiple objectives: mission, QoS, resource-efficiency
 - Different realizations: offline/online, centralized/distributed,
- Highly relevant for many MRS applications, eg.,
 - Entertainment, monitoring/inspection, search&rescue, transportation

Two Examples of Team Behavior

Time and Energy Optimized Trajectory Generation for Multi-Agent Constellation Changes

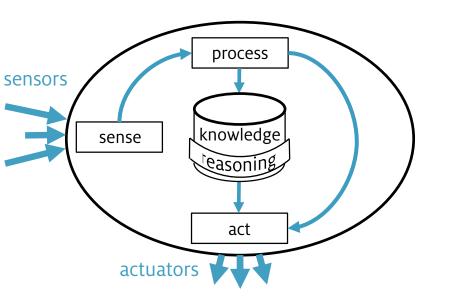
Paul Ladinig, Bernhard Rinner, Stephan Weiss

ICRA 2021

Multi-drone constellation change

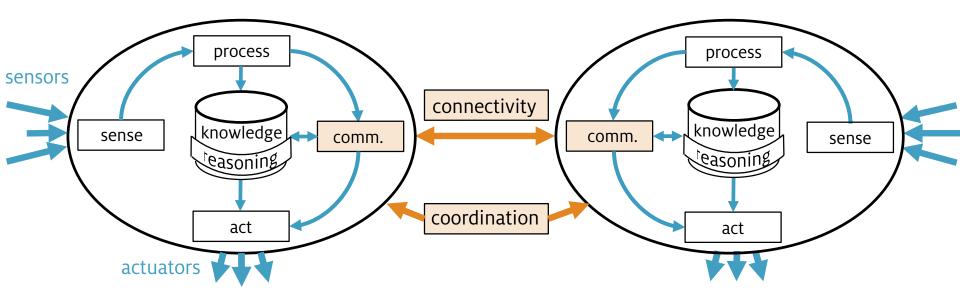
- Collision-free trajectory planning with MPC path following
- Framed as optimization problem with various constraints
- Offline coordination

[Ladinig et al. Time and Energy Optimized Trajectory Generation for Multi-Agent Constellation Changes. In *Proc. ICRA*, 2021.]


Swarming and synchronization

- Collective behavior emerges from local processing and interaction
- Following self-organization principles ("swarmalators")
- Online coordination

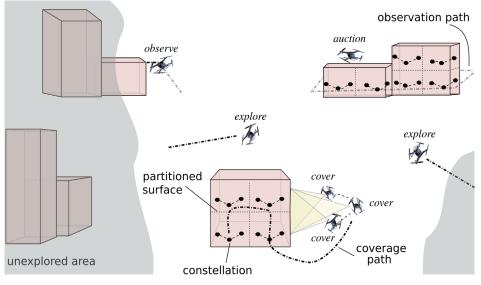
[Barciś, Bettstetter. Sandsbots: Robots that sync and swarm. *IEEE Access*, 2020.]


From single Autonomous Agents

- Traditional architecture of autonomous agent
 - With sense-process-act cycle
 - Maintains knowledge base with reasoning capabilities

To Multi-Robot Architecture

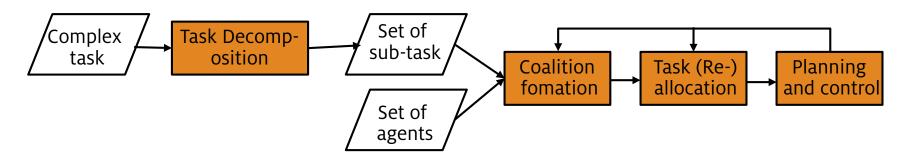
- Expanded data processing of individual robots by
 - Coordination of decision making
 - Robust wireless connectivity to transfer data with different QoS
 - Communication for optimized data distribution (what, when, to whom)


Terminology

- Robot is a special kind of agent (mostly) realized as a mechatronic construct
- Multi-robot system is a group of robots operating in the same environment
- MRS coordination can be classified wrt.
 - Cooperation: Do the robots cooperate to solve a problem?
 - Knowledge: How much knowledge do have robots about each other
 - Coordination: How much joint decision making is enforced?
 - Organization: What kind of decision structure is employed?
- Emphasis on MRS consisting of autonomous robots that collaborate in order to achieve a common global goal

Multi-robot Application Scenario

- Drones equipped with cameras collect data about environment
- Drones take on different roles •
 - Explore unknown areas
 - Detect and partition objects
 - Analyze partitions in joint constellations
 - Move along observation paths



Example for generic MRS coordination tasks

[Mazdin, Rinner, Distributed and Communication-Aware Coalition Formation and Task Assignment in Multi-Robot Systems. B. Rinner IEEE Access, 2021.] 8

MRS Work Flow

- Four main design blocks for MRS
 - Task decomposition: How to divide complex tasks into sub-tasks?
 - Coalition formation: How to form teams for sub-tasks?
 - Task allocation: How to assign sub-tasks to agents for execution?
 - Task execution: How to plan and control actions to complete sub-tasks?
- Varying degree of automation for design blocks
 - Human vs. robot
 - Offline vs. online

[Rizk, Awad, Tunstel. <u>Cooperative Heterogeneous Multi-Robot Systems: A Survey</u>. *ACM Computing Surveys*, 2019.] B. Rinner

Task Decomposition

- Task decomposition typically requires domain knowledge and considers robot capabilities
- Complexity, amount and interdependency of sub-tasks has impact on other blocks
 - Multi-agent tasks require collaboration of multiple robots
- Simple decomposition strategies
 - Spatial partitioning: decompose the environment
 - Temporal partitioning: decompose into sequence of sub-tasks
- Decomposition often performed offline and manually

Coalition Formation

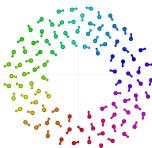
- Coalition formation typically casted as (multi-criterion) optimization problem with distinction into
 - Single or multi-robot tasks
 - Static or dynamic teams
 - Deterministic or uncertain robots' behavior; decentralized approaches
- Search algorithms often adapted to coalition formation problems, eg.,
 - Ant colony optimization, particle swarm optimization, evolutionary algorithms
- Combined coalition formation and task allocation
 - Market-based approaches, voting games
 - Reinforcement learning frameworks

Task Allocation

- Task allocation is well-investigated with many approaches, but MRS introduce specific constraints (eg., spatial, temporal, sensing and actuation)
- Examples of MRS-specific task allocation approaches
 - Optimization or approximation travel distance of robots
 - Auctioning algorithms
 - Multi-agent reinforcement learning, distributed constraint optimization
- Combined coalition formation and task allocation typically improves performance at additional computation cost

Planning and Control

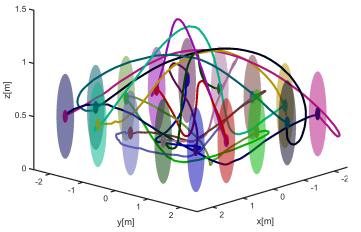
- MRS planning and control (decision making) determines sequence of actions agents should perform to complete their assigned task
- Multiple frameworks for solving decision-making problems, including RL, game theory, swarm intelligence, and graph-theoretic models.


Model	Degree of	Degree of	Degree of
	Scalability	Heterogeneity	Communication
Swarm Intelligence	High	Low	Low
Multi-agent MDP	Medium	Medium	Medium
Decentralized MDP	Medium	Medium	Medium
Multi-agent POMDP	Medium	Medium	High
Decentralized POMDP	Medium	Medium	High
Interactive POMDP	Low	Medium	High
Partially Observable Stochastic Games	Low	High	Medium

[Rizk, Awad, Tunstel. <u>Cooperative Heterogeneous Multi-Robot Systems: A Survey</u>. *ACM Computing Surveys*, 2019.] B. Rinner

Team Behavior Examples

- Fast and safe constellation changes for many drones
- Optimize for mission time and energy consumption
- 2. Cooperative route planning for surveillance
 - Multi robot routes for persistent surveillance with latency, idleness and energy constraints
 - Maintain continuous or intermittent connectivity
- 3. Swarming and synchronization
 - Emergent, self-organizing team behavior
 - Couple oscillators for joint synchronization and motion


Motion Planning in MRS

- Planning the movement of robots to reach a target
 - Path planning: determine path (trajectory) from A to B
 - Route planning: navigate in environment along multiple (way) point
- Variations in modelling environment and robots, e.g.,
 - Continuous models, grids, graphs
 - Robot dynamics, linear movements models, discrete movement
- Constraints and objectives
 - Collision free movement, space limitations
 - Connectivity (permanent or intermittent)
 - Energy consumption, movement time, ...
- Motion planning in MRS as complex coordination problem

Multi-drone Constellation Change

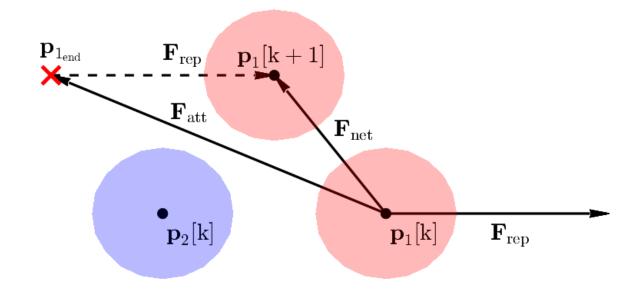
- Many drones simultaneously move from start to end constellation
 - avoiding collisions among each other
 - reducing transition time and energy
- Two-step path planning approach
 "Snap-optimized MPC with potential field extension (SOMPF)"
 - Compute initial, individual trajectories with model predictive control (MPC) and reduce potential collisions with potential fields
 - Generate final trajectories by minimizing snap within dynamic volume constraints

Initial Trajectories

• System dynamics of drone *i* with discretization step size *h* $p_i[k+1] = p_i[k] + hv_i[k] + \frac{h^2}{2}a_i[k]$

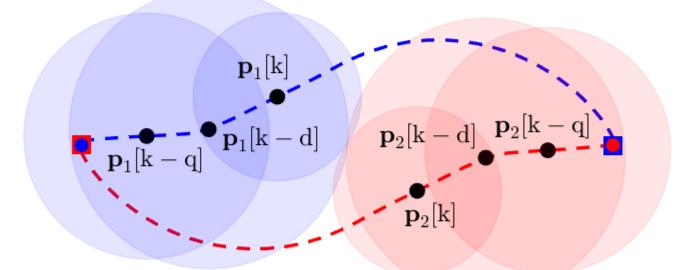
$$\boldsymbol{p}_{i}[k+1] = \boldsymbol{p}_{i}[k] + h\boldsymbol{v}_{i}[k] + \frac{1}{2}\boldsymbol{a}_{i}[k]$$
$$\boldsymbol{v}_{i}[k+1] = \boldsymbol{v}_{i}[k] + h\boldsymbol{a}_{i}[k]$$

with physical limits on position $oldsymbol{p}_i$, velocity $oldsymbol{v}_i$ and acceleration $oldsymbol{a}_i$


- Collision constraints at time points k $\|\Theta^{-1}(p_i[k] - p_j[k])\|_2 \ge r_{min} + \varepsilon_{ij}, \quad \forall i, j, k | i \neq j$ with scaling matrix Θ and relaxation factor ε_{ij}
- Compute the predicted accelerations U_i over MPC time horizon by solving a quadratic program $\min_{U_i} U_i^T H U_i + f^T U_i, \forall i$ $s.t. A U_i \leq b$

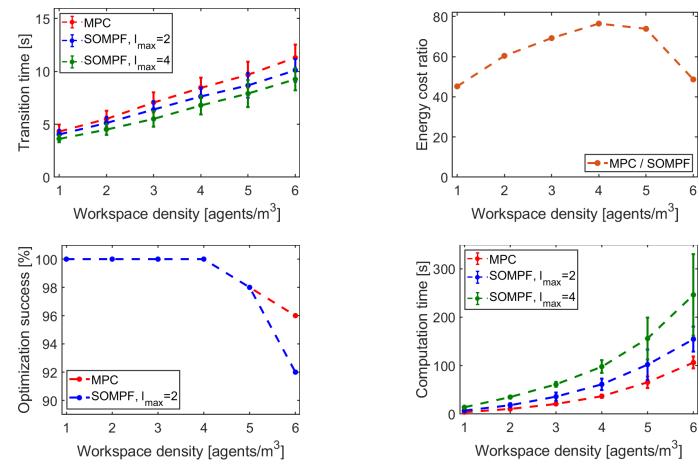
Cost functions (H and f) governs transition of each agent

Collision Avoidance


• If collision at newly propagated $p_i[k+1]$ is detected apply potential fields to bypass collision

Trajectory Refinement

• Perform snap minimization with dynamic volume constraints

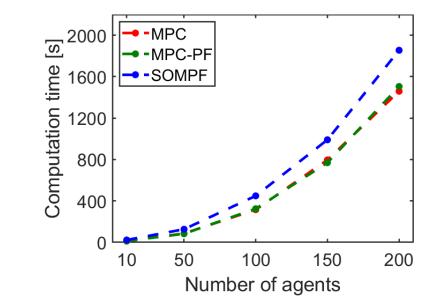


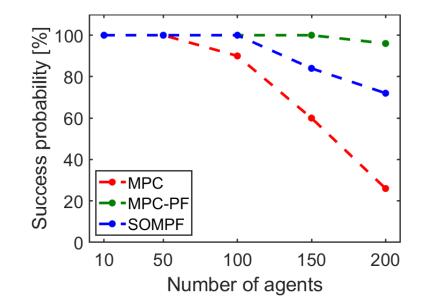
- Compute the maximum intersection-free corridor (spheres) at each time step
- Refined trajectories are faster and more energy-effient

B. Rinner

Performance Evaluation

• Constellation changes within a fixed flight volume and varying agent density

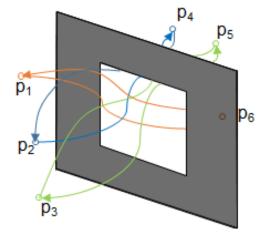


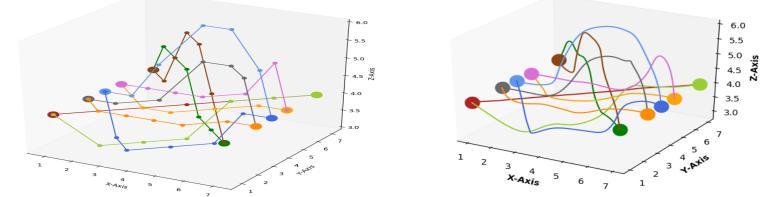


B. Rinner

Performance Evaluation (2)

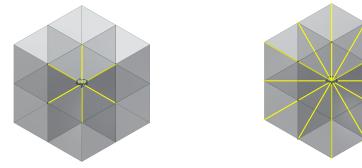
• Constellation changes with varying agents and constant agent density (1 agent/m³⁾





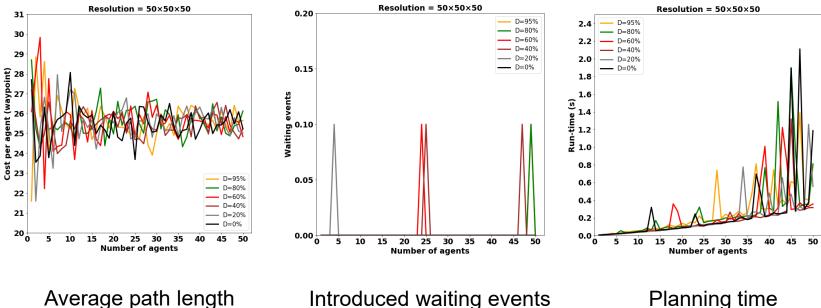
Constellation Change with Obstacles

- *N* drones simultaneously move in confined environments
- Path planning approach
 - Apply discrete multi-agent path planning (enhanced conflict-based search)
 - Generate trajectories within volume of discrete path (following snap minimization)



[Beyoglu, Weiss, Rinner. <u>Multi-Agent Path Planning and Trajectory Generation</u> for Confined Environments. In *Proc. ICUAS*, 2022.]

Waiting Events to Avoid Collision

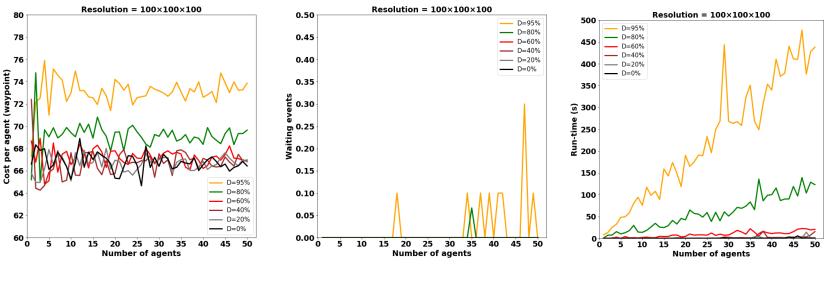

- Waiting events are problematic with discrete planning
 - If no conflict-free movement to any neighboring cell is possible, agents need to wait ("waiting event")
 - Waiting events impede smooth and energy-efficient trajectory generation (deceleration, hovering and acceleration)
- Extend the available movement actions at each discrete planning step
 - Diagonal movement results in 26 potential movement actions within discretized 3D grid

B. Rinner

Simulation Results

- Performance in environments with randomly placed obstacles • and fixed spatial resolution
 - Mean values from 10 simulation runs

Introduced waiting events

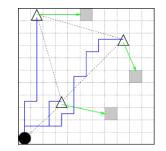

Planning time

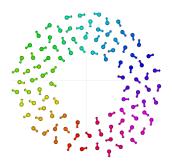
Simulation Results (2)

- Performance in environments with varying window border size and fixed spatial resolution
 - Mean values from 10 simulation runs

Introduced waiting events

Planning time

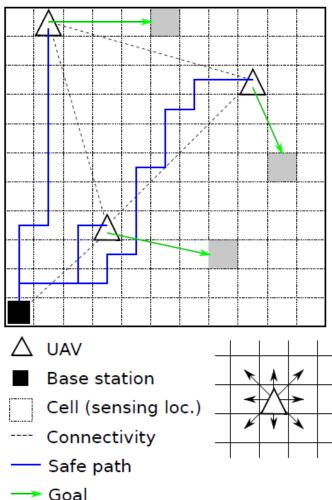

Average path length


Team Behavior Examples

- Fast and safe constellation changes for many drones
- Optimize for mission time and energy consumption
- 2. Cooperative route planning for surveillance
 - Multi robot routes for persistent surveillance with latency, idleness and energy constraints
 - Maintain continuous or intermittent connectivity
- 3. Swarming and synchronization
 - Emergent, self-organizing team behavior
 - Couple oscillators for joint synchronization and motion

1.

Motion Planning for Surveillance

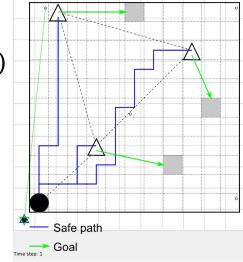

- Continuously monitor environment while maintaining multiple constraints, e.g.,
 - Sensing idleness
 Network connectivity
 Energy limitation
 Base station
- Persistent surveillance (PS) or patrolling problem
 - Requires coordination of robots' movement in space and time
 - Fundamental problem for various MRS applications

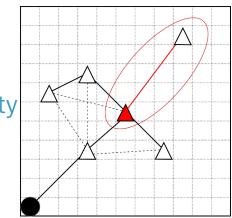
[Scherer, Rinner. Multi-robot persistent surveillance with connectivity constraints. IEEE Access. 2020]

PS with Persistent Connectivity

- Plan paths that minimize worst idleness and keep network
 connected
 - Grid-based environments (partitioned into convex areas) and synchronous movement
 - Intermediate (relay) robots for maintaining connectivity (distance between robots)
 - If energy is limited return periodically to BS for recharging (along safe path)
 - Path planning is NP hard
 (proof by transformation to 3SAT)
- Investigate new motion planning heuristics with different planning horizon and coordination
 - Short vs. full horizon planning
 - Individual vs. cooperative planning

Short Horizon Planning (SH)

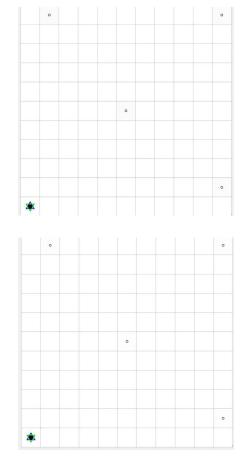

- Adopted goal-based heuristic [Nigam 2012]
 - Each drone u moves to cell c with highest A(u, c)


 $A(u,c) = I(c) + w_0 \cdot dist(u,c) + w_1 \cdot \min_{v \neq u} dist(v,c)$

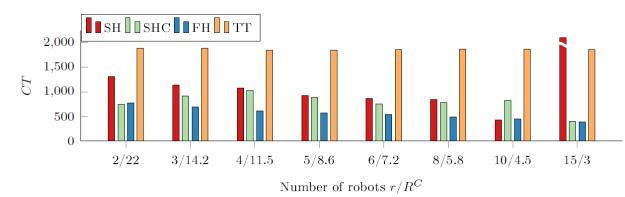
Idleness Distance to cell

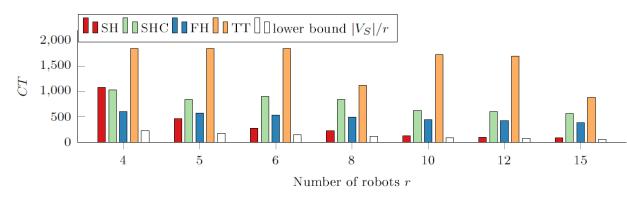
Minimum distance to other drones *v*

- Weights w_0 and w_1 initially determined A(u, c) values updated at each iteration
- Extended by safe paths for each drone to guarantee return to base station
 - with remaining energy without loosing connectivity
 - If one drone reaches its energy limit, all drones move along safe paths back to base



Cooperative Planning


- Avoid limitations of non-cooperative SH planning, e.g.,
 - Deadlocks (oscillations and mutual blocking)
- Short horizon cooperative (SHC) planning
 - Select robots for next sensing locations
 - Coordinate movement by graph matching (from current to next sensing configuration)
- Full horizon (FH) planning
 - Leader robot traverses tour through all sensing locations, other robots relay data to BS
 - If many robots available, several leader robots (partitioning)
 - Planning cycle for complete environment



[Scherer, Rinner. <u>Short and Full Horizon Motion Planning for Persistent multi-UAV</u> ner <u>Surveillance with Energy and Communication Constraints</u>. In *Proc IROS*. 2017]

Comparison of Planning Algorithms

- Simulation study on 30×30 cells
 - First coverage time (CT) of entire area Varying number of robots with decreasing and fixed comm. range R^{C}

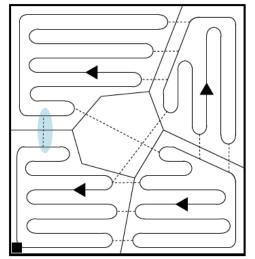
B. Rinner

Strong comm. constraints

(all robots required for remote cells)

- FH outperfoms others
- SH fails to cover area for 15 robots
- TT tree traversal for partitioned areas as reference

Weak comm. constraints

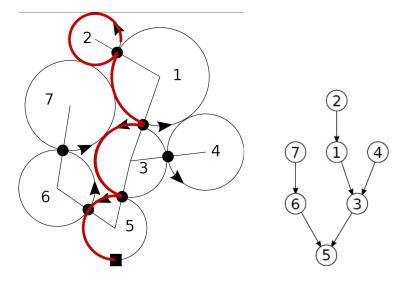

(4 robots required for remote cells)

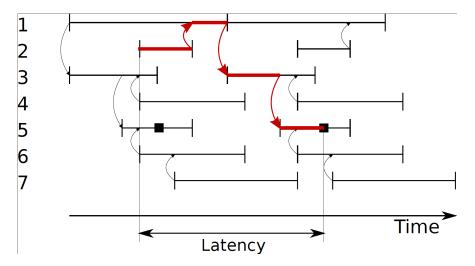
- SH approaches lower bound
- TT tree traversal for partitioned areas as reference

[Scherer, Rinner. <u>Multi-robot persistent surveillance with connectivity constraints</u>. *IEEE Access*. 2020]

PS with Intermittent Connectivity

- Schedule movement along given tours to minimize worst
 - idleness and data delivery latency
 - Data transfer only a meeting points (store-and-forward)
 - Who should meet when and where
 - Minimum delay scheduling is NP hard (proof by transformation to 3SAT)




- Investigate new robot scheduling algorithms for given tours
 - Selecting travel direction and meeting points
 - Executing schedules onboard robots

Scheduling based on Tour Graphs

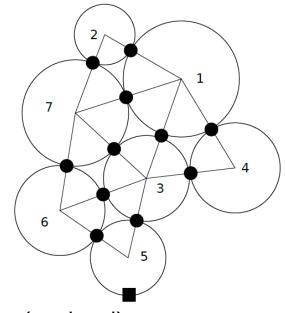
• Model data transfers among patrolling robots as tour

- Robots patrol environment along given tours
- Data transfer via meeting points represented as graph (here tree)

- Determine for each robot when to move, wait and transfer
- Move along longest tour without waiting
- Construct schedule beginning with base station

[Scherer, Rinner. <u>Multi-Robot Patrolling with Sensing Idleness and Data Delay Objectives</u>. J. Intelligent & Robotic Systems. 2020]

Various Problem Instances

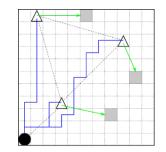

Minimize latency for given tours and bounded idleness

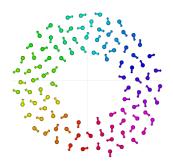
- 1. Select tour directions
 - Input: tour tree
 - Output: directions, schedule
- 2. Select tree (NP hard)
 - Input: tour graph, directions
 - Output: tree, schedule
- 3. Select tree and tour directions (NP hard)
 - Input: tour graph
 - Output: tree, directions, schedule
- 4. Select tree, meeting points and tour direction (NP hard)
 - Input: tour multi-graph (multiple meeting points between tours)
 - Output: tree, directions, schedule

Minimize idleness for given tours and latency constraint

[Scherer, Rinner. <u>Multi-UAV Surveillance with Minimum Information Idleness and Latency Constraints</u>. *IEEE Robotics and Automation Letters.* 2020]

B. Rinner




Team Behavior Examples

- Fast and safe constellation changes for many drones
- Optimize for mission time and energy consumption
- 2. Cooperative route planning for surveillance
 - Multi robot routes for persistent surveillance with latency, idleness and energy constraints
 - Maintain continuous or intermittent connectivity
- 3. Swarming and synchronization
 - Emergent, self-organizing team behavior
 - Couple oscillators for joint synchronization and motion

1.

Selforganization for Drone Swarms

[lead by c. Bettstetter]

- Synchronization
 - Coordination of robots to achieve order in time domain
 - Adjustment of phases ϕ_i
- Swarming
 - Coordination of robots to achieve order in space domain
 - Adjustment of locations x_i
- Swarmalators
 - Unified model where robot's phase and location are mutually coupled
 - Emergent space-time patterns

[O'Keeffe, Hong, Strogatz. <u>Oscillators that sync and swarm</u>. *Nature Communications.* 2017] [Barcis, Bettstetter. <u>Sandsbots: Robots That Sync and Swarm</u>. *IEEE Access.* 2020]

Swarmalators

Synchronization

The phases ϕ_i of robots influence each other.

E.g.: Phases synchronize to a common value, or "desynchronize" to differing values (splay states).

Swarming

The locations x_i of robots influence each other.

E.g.: Robots physically attract or repel each other based on their distance.

Swarmalators: bidirectional coupling between sync and swarming The phases ϕ_i influence the movements \dot{x}_i , and the positions x_i influence the phase dynamics ϕ_i .

E.g.: Entities with similar phases may attract or repel each other stronger, and close-by entities may synchronize faster.

Swarmalator Model

 ΛT

A 7

Phase-dependent movement

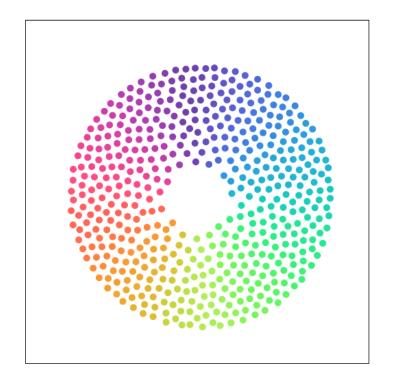
• *N* nodes indexed by *i*

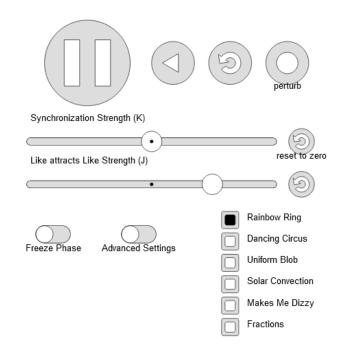
- Location x_i and distance x_{ii}
- Phase ϕ_i and phase diff ϕ_{ii}

$$\dot{\mathbf{x}}_{i} = \frac{1}{N} \sum_{j \neq i}^{N} \begin{bmatrix} \mathbf{I}_{1}(\mathbf{x}_{ij}) F(\phi_{ij}) - \mathbf{I}_{2}(\mathbf{x}_{ij}) \end{bmatrix} \text{ with } F(\phi_{ij}) = 1 + J \cos \phi_{ij}$$
Attraction
Repulsion

• Location-dependent synchronization

Behavior is governed by two parameters J and K.

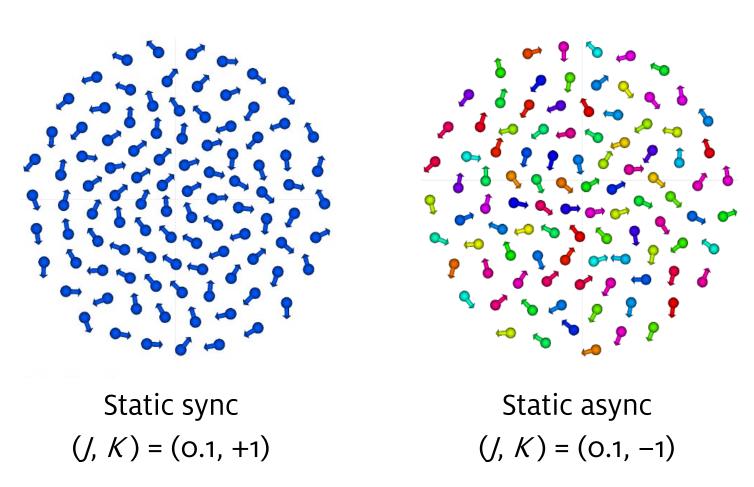

$$\dot{\phi}_{i} = \frac{K}{N} \sum_{j \neq i}^{N} H(\phi_{ij}) G_{\phi}(\mathbf{x}_{ij}) \text{ with } G_{\phi}(\mathbf{x}_{ij}) = \frac{1}{\|\mathbf{x}_{ij}\|}$$
Attraction


[O'Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Complexity explorable "Swårmalätørs"

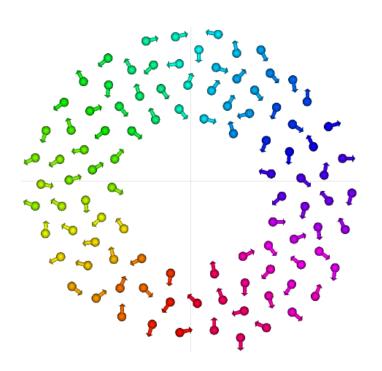
[by D. Brockmann]

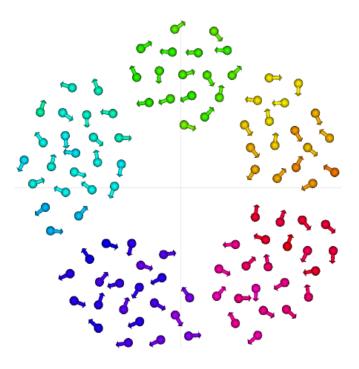
[Brockmann: Complexity explorable: Swårmalätørs - Pattern that emerge when collective motion and synchronization entangle, <u>complexity-explorables.org</u>, 2021.]



This work is licensed under a Creative Commons Attribution 2.0 Germany License .

B.Rinner


Swarmalator Patterns



[O'Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Swarmalator Patterns (2)

Static phase wave (J, K) = (1, 0)

Splintered phase wave (J, K) = (1, -0.1)

[O'Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Swarmalators for Drone Swarms

[lead by c. Bettstetter]

- From theory to practice
 - How to adapt the swarmalator model for use in robotics?
 - Does the adapted model lead to identical patterns?
- Limitations of real multi-robot systems
 - Movement constraints and speed limitations
 - Collision avoidance
 - Interactions at discrete times via messages
 - Message loss and delay
 - Limited communication range

[Schilcher, Schmidt, Vogell, Bettstetter: <u>Swarmalators with stochastic coupling and memory</u>. Proc. IEEE Intern. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS), 2021.]

[Barciś, Barciś, Bettstetter: <u>Robots that sync and swarm: A proof of concept in ROS 2</u>. B.Rinner Proc. IEEE Intern. Symp. on Multi-Robot and Multi-Agent Systems (MRS), 2019.]

Deployment on Drones

Ground robot deployment: [Barcis et al. Robots that Sync and Swarm: A Proof of Concept in ROS 2. In Proc MRS. 2019] **B.Rinner**

Lessons Learnt

- Complexity
 - Multi-robot systems perform highly interdependent tasks
 - Interdisciplinary research for tackling complexity
- Methodology
 - Experimental research with multi-robot systems is challenging
 - Interesting feedback from engineering work to basic research
- Non-technical issues
 - Safety, legal, ethical and regulatory aspects need to be considered
- Perseverance

Conclusion

- Two step path planning for free and confined environments
- Heuristic route planning for surveillance with connectivity constraints
- Swarmalators for emerging synchronization and swarming
- Coordination problems are challenging and fundamental for several MRS applications
 - Aim for efficient heuristics with performance bounds
 - Rely on various (simplifying) assumptions
 - Provide still many open research questions

© D. Waschnig

Drone Research at Klagenfurt

- Started in 2008
- Developed into a key research area
 - 8 Profs
 - >20 PhDs & PostDocs
 - Dedicated doctoral school
- Covering various research topics
 - Autonomous navigation & coordination
 - Mission & path planning
 - Wireless communication
 - Interaction & various applications
- Opening Europe's largest drone hall
 - > 1000 m3 flight space
 - Motion capturing & 5G connectivity

Acknowledgements

Pervasive Computing group
 <u>https://www.bernhardrinner.com</u>

 Dronehub Klagenfurt
 Profs. Bettstetter, Hellwagner, Weiss https://uav.aau.at

