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Team Behavior of Multiple Robots

• Coordinate actions in space and time 
to achieve common goal

• Key coordination tasks include
– Sharing of knowledge

– Joint decision making

– Resource allocation

• Complex problem with huge design space
– Various constraints: energy, communication, deadlines, payloads etc.

– Multiple objectives: mission, QoS, resource-efficiency

– Different realizations: offline/online, centralized/distributed, 

• Highly relevant for many MRS applications, eg.,
– Entertainment, monitoring/inspection, search&rescue, transportation
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Two Examples of Team Behavior

Multi-drone constellation change

– Collision-free trajectory planning
with MPC path following

– Framed as optimization problem
with various constraints

– Offline coordination
[Ladinig et al. Time and Energy Optimized Trajectory Generation 
for Multi-Agent Constellation Changes. In Proc. ICRA, 2021.]

Swarming and synchronization

– Collective behavior emerges from
local processing and interaction

– Following self-organization
principles („swarmalators“)

– Online coordination

[Barciś, Bettstetter. Sandsbots: Robots that sync 
and swarm. IEEE Access, 2020.]
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From single Autonomous Agents

• Traditional architecture of autonomous agent
– With sense-process-act cycle

– Maintains knowledge base with reasoning capabilities
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To Multi-Robot Architecture

• Expanded data processing of individual robots by
– Coordination of decision making

– Robust wireless connectivity to transfer data with different QoS

– Communication for optimized data distribution (what, when, to whom)

[Rinner, Bettstetter, Hellwagner, Weiss. Multidrone systems: More than the sum of the parts. IEEE Computer, 2021.
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Terminology

• Robot is a special kind of agent (mostly) realized as a 
mechatronic construct

• Multi-robot system is a group of robots operating in the same 
environment

• MRS coordination can be classified wrt.
– Cooperation: Do the robots cooperate to solve a problem?

– Knowledge: How much knowledge do have robots about each other

– Coordination: How much joint decision making is enforced?

– Organization: What kind of decision structure is employed?

• Emphasis on MRS consisting of autonomous robots that 
collaborate in order to achieve a common global goal

[K.Geihs. Engineering Challenges Ahead for Robot Teamwork in Dynamic Environments. Applied Sciences, 2020.]

https://www.mdpi.com/2076-3417/10/4/1368
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Multi-robot Application Scenario

• Drones equipped with cameras collect data about environment

• Drones take on different roles
– Explore unknown areas

– Detect and partition objects

– Analyze partitions in 
joint constellations

– Move along observation paths 

• Example for generic MRS coordination tasks

[Mazdin, Rinner. Distributed and Communication-Aware Coalition Formation and Task Assignment in Multi-Robot Systems. 
IEEE Access, 2021.]

https://ieeexplore.ieee.org/document/9360591
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MRS Work Flow

• Four main design blocks for MRS
– Task decomposition: How to divide complex tasks into sub-tasks?

– Coalition formation: How to form teams for sub-tasks?

– Task allocation: How to assign sub-tasks to agents for execution?

– Task execution: How to plan and control actions to complete sub-tasks?

• Varying degree of automation for design blocks
– Human vs. robot

– Offline vs. online

[Rizk, Awad, Tunstel. Cooperative Heterogeneous Multi-Robot Systems: A Survey. ACM Computing Surveys, 2019.]
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https://dl.acm.org/doi/10.1145/3303848


B. Rinner 10

Task Decomposition

• Task decomposition typically requires domain knowledge and 
considers robot capabilities

• Complexity, amount and interdependency of sub-tasks has 
impact on other blocks
– Multi-agent tasks require collaboration of multiple robots

• Simple decomposition strategies
– Spatial partitioning: decompose the environment

– Temporal partitioning: decompose into sequence of sub-tasks

• Decomposition often performed offline and manually
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Coalition Formation

• Coalition formation typically casted as (multi-criterion) 
optimization problem with distinction into
– Single or multi-robot tasks

– Static or dynamic teams

– Deterministic or uncertain robots’ behavior; decentralized approaches

• Search algorithms often adapted to coalition formation 
problems, eg.,
– Ant colony optimization, particle swarm optimization, evolutionary 

algorithms

• Combined coalition formation and task allocation
– Market-based approaches, voting games

– Reinforcement learning frameworks
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Task Allocation

• Task allocation is well-investigated with many approaches, but 
MRS introduce specific constraints (eg., spatial, temporal, 
sensing and actuation) 

• Examples of MRS-specific task allocation approaches
– Optimization or approximation travel distance of robots

– Auctioning algorithms 

– Multi-agent reinforcement learning, distributed constraint optimization

• Combined coalition formation and task allocation typically 
improves performance at additional computation cost
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Planning and Control

• MRS planning and control (decision making) determines  
sequence of actions agents should perform to complete their 
assigned task 

• Multiple frameworks for solving decision-making problems, 
including RL, game theory, swarm intelligence, and graph-
theoretic models.

[Rizk, Awad, Tunstel. Cooperative Heterogeneous Multi-Robot Systems: A Survey. ACM Computing Surveys, 2019.]

https://dl.acm.org/doi/10.1145/3303848
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Team Behavior Examples

1. Collision-free and efficient path planning
– Fast and safe constellation changes for many drones

– Optimize for mission time and energy consumption

2. Cooperative route planning for surveillance
– Multi robot routes for persistent surveillance with 

latency, idleness and energy constraints

– Maintain continuous or intermittent connectivity

3. Swarming and synchronization
– Emergent, self-organizing team behavior

– Couple oscillators for joint synchronization and motion

[Dronehub Klagenfurt https://uav.aau.at] 

https://uav.aau.at/
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Motion Planning in MRS

• Planning the movement of robots to reach a target 
– Path planning: determine path (trajectory) from A to B

– Route planning: navigate in environment along multiple (way) point

• Variations in modelling environment and robots, e.g.,
– Continuous models, grids, graphs

– Robot dynamics, linear movements models, discrete movement

• Constraints and objectives
– Collision free movement, space limitations

– Connectivity (permanent or intermittent)

– Energy consumption, movement time, …

• Motion planning in MRS as complex coordination problem



B. Rinner 16

Multi-drone Constellation Change

• Many drones simultaneously move 
from start to end constellation
– avoiding collisions among each other

– reducing transition time and energy

• Two-step path planning approach
“Snap-optimized MPC with potential field extension (SOMPF)” 

– Compute initial, individual trajectories with model predictive control 
(MPC) and reduce potential collisions with potential fields

– Generate final trajectories by minimizing snap
within dynamic volume constraints

[Ladinig, Rinner, Weiss. Time and Energy Optimized Trajectory Generation 
for Multi-Agent Constellation Changes. In Proc. ICRA, 2021.]

https://ieeexplore.ieee.org/document/9561702
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Initial Trajectories

• System dynamics of drone 𝑖𝑖 with discretization step size ℎ

𝒑𝒑𝑖𝑖 k + 1 = 𝒑𝒑𝑖𝑖 𝑘𝑘 + ℎ𝒗𝒗𝑖𝑖 𝑘𝑘 +
ℎ2

2
𝒂𝒂𝑖𝑖 𝑘𝑘

𝒗𝒗𝑖𝑖 𝑘𝑘 + 1 = 𝒗𝒗𝑖𝑖 𝑘𝑘 + ℎ𝒂𝒂𝑖𝑖[𝑘𝑘]
with physical limits on position 𝒑𝒑𝑖𝑖, velocity 𝒗𝒗𝑖𝑖 and acceleration 𝒂𝒂𝑖𝑖

• Collision constraints at time points 𝑘𝑘
Θ−1 𝒑𝒑𝑖𝑖 𝑘𝑘 − 𝒑𝒑𝑗𝑗[𝑘𝑘]

2
≥ 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 + 𝜀𝜀𝑖𝑖𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘|𝑖𝑖 ≠ 𝑗𝑗

with scaling matrix Θ and relaxation factor 𝜀𝜀𝑖𝑖𝑗𝑗
• Compute the predicted accelerations 𝑼𝑼𝒊𝒊 over

MPC time horizon by solving a quadratic program 
min
𝑈𝑈𝑖𝑖

𝑼𝑼𝑖𝑖𝑇𝑇𝑯𝑯𝑼𝑼𝑖𝑖 + 𝒇𝒇𝑇𝑇𝑼𝑼𝑖𝑖 ,∀𝑖𝑖

𝑠𝑠. 𝑡𝑡.𝑨𝑨𝑼𝑼𝑖𝑖 ≤ 𝒃𝒃
Cost functions (𝑯𝑯 and 𝒇𝒇) governs transition of each agent



Collision Avoidance

• If collision at newly propagated 𝒑𝒑𝑖𝑖[𝑘𝑘 + 1] is detected
apply potential fields to bypass collision

18B. Rinner
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Trajectory Refinement

• Perform snap minimization with dynamic volume constraints

• Compute the maximum intersection-free corridor (spheres) at 
each time step

• Refined trajectories are faster and more energy-effient
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Performance Evaluation

• Constellation changes within a fixed flight volume and varying
agent density
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Performance Evaluation (2)

• Constellation changes with varying agents and constant agent
density (1 agent/m3)
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Constellation Change with Obstacles

• 𝑁𝑁 drones simultaneously move
in confined environments

• Path planning approach 
– Apply discrete multi-agent path planning

(enhanced conflict-based search)

– Generate trajectories within volume of
discrete path (following snap minimization)

[Beyoglu, Weiss, Rinner. Multi-Agent Path Planning and Trajectory Generation
for Confined Environments. In Proc. ICUAS, 2022.]

https://bernhardrinner.com/pubs/2022/Beyoglu_ICUAS2022.pdf
https://bernhardrinner.com/pubs/2022/Beyoglu_ICUAS2022.pdf
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Waiting Events to Avoid Collision

• Waiting events are problematic with discrete planning 
– If no conflict-free movement to any neighboring cell is possible, agents 

need to wait (“waiting event”)

– Waiting events impede smooth and energy-efficient trajectory 
generation (deceleration, hovering and acceleration)

• Extend the available movement actions at each discrete 
planning step
– Diagonal movement results in 26 potential movement actions within 

discretized 3D grid
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Simulation Results

• Performance in environments with randomly placed obstacles
and fixed spatial resolution 
– Mean values from 10 simulation runs  

Average path length Introduced waiting events Planning time
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Simulation Results (2)

• Performance in environments with varying window border size
and fixed spatial resolution 
– Mean values from 10 simulation runs  

Average path length Introduced waiting events Planning time
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Team Behavior Examples

1. Collision-free and efficient path planning
– Fast and safe constellation changes for many drones

– Optimize for mission time and energy consumption

2. Cooperative route planning for surveillance
– Multi robot routes for persistent surveillance with 

latency, idleness and energy constraints

– Maintain continuous or intermittent connectivity

3. Swarming and synchronization
– Emergent, self-organizing team behavior

– Couple oscillators for joint synchronization and motion



Motion Planning for Surveillance

• Continuously monitor environment while maintaining 
multiple constraints, e.g.,
– Sensing idleness

– Network connectivity

– Energy limitation

• Persistent surveillance (PS) or patrolling problem
– Requires coordination of robots’ movement in space and time

– Fundamental problem for various MRS applications

27B. Rinner

[Scherer, Rinner. Multi-robot persistent surveillance with connectivity constraints. IEEE Access. 2020]

https://ieeexplore.ieee.org/document/8962007


PS with Persistent Connectivity

• Plan paths that minimize worst idleness and keep network 
connected
– Grid-based environments (partitioned into

convex areas) and synchronous movement

– Intermediate (relay) robots for maintaining 
connectivity (distance between robots)

– If energy is limited return periodically to 
BS for recharging (along safe path)

– Path planning is NP hard 
(proof by transformation to 3SAT)

• Investigate new motion planning 
heuristics with different planning 
horizon and coordination 
– Short vs. full horizon planning

– Individual vs. cooperative planning
28B. Rinner



Short Horizon Planning (SH)
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• Adopted goal-based heuristic [Nigam 2012]

– Each drone 𝑢𝑢 moves to cell 𝑐𝑐 with highest 𝐴𝐴 𝑢𝑢, 𝑐𝑐

– Weights 𝑤𝑤0 and 𝑤𝑤1 initially determined
𝐴𝐴(𝑢𝑢, 𝑐𝑐) values updated at each iteration

• Extended by safe paths for each drone
to guarantee return to base station
– with remaining energy without loosing connectivity

– If one drone reaches its energy limit, all drones
move along safe paths back to base

𝐴𝐴 𝑢𝑢, 𝑐𝑐 = 𝐼𝐼 𝑐𝑐 + 𝑤𝑤0 ⋅ 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 𝑢𝑢, 𝑐𝑐 + 𝑤𝑤1 ⋅ min
𝑣𝑣≠𝑢𝑢

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 𝑣𝑣, 𝑐𝑐

[Nigam et al. Control of multiple UAVs for persistent surveillance: Algorithm and 
flight test results. IEEE Trans. on Control Systems Technology. 2012]

Idleness Distance to cell Minimum distance
to other drones 𝑣𝑣

https://ieeexplore.ieee.org/document/6045299
https://ieeexplore.ieee.org/document/6045299


Cooperative Planning
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• Avoid limitations of non-cooperative SH planning, e.g.,
– Deadlocks (oscillations and mutual blocking)

• Short horizon cooperative (SHC) planning 
– Select robots for next sensing locations

– Coordinate movement by graph matching 
(from current to next sensing configuration)

• Full horizon (FH) planning 
– Leader robot traverses tour through 

all sensing locations, other robots 
relay data to BS

– If many robots available, 
several leader robots (partitioning)

– Planning cycle for complete environment

[Scherer, Rinner. Short  and  Full  Horizon  Motion  Planning  for  Persistent  multi-UAV
Surveillance  with  Energy  and  Communication  Constraints. In Proc IROS. 2017]

https://ieeexplore.ieee.org/document/8202162
https://ieeexplore.ieee.org/document/8202162


Comparison of Planning Algorithms

31B. Rinner

• Simulation study on 30 × 30 cells
– First coverage time (CT) of entire area 

Varying number of robots with decreasing and fixed comm. range 𝑅𝑅𝐶𝐶

[Scherer, Rinner. Multi-robot persistent surveillance with connectivity constraints. IEEE Access. 2020]

Strong comm. constraints
(all robots required for remote cells)

• FH outperfoms others
• SH fails to cover area for

15 robots
• TT tree traversal for 

partitioned areas as reference

Weak comm. constraints
(4 robots required for remote cells)

• SH approaches lower bound
• TT tree traversal for

partitioned areas as reference

https://ieeexplore.ieee.org/document/8962007


PS with Intermittent Connectivity

• Schedule movement along given tours to minimize worst 
idleness and data delivery latency
– Data transfer only a meeting points

(store-and-forward)

– Who should meet when and where

– Minimum delay scheduling is NP hard 
(proof by transformation to 3SAT)

• Investigate new robot scheduling algorithms for given 
tours 
– Selecting travel direction and meeting points

– Executing schedules onboard robots

32B. Rinner

[Scherer, Rinner. Multi-Robot Patrolling with Sensing Idleness and Data Delay Objectives. 
J. Intelligent & Robotic Systems. 2020]

https://link.springer.com/article/10.1007/s10846-020-01156-6


Scheduling based on Tour Graphs

• Model data transfers among patrolling robots as tour

33B. Rinner

[Scherer, Rinner. Multi-Robot Patrolling with Sensing Idleness and Data Delay Objectives. 
J. Intelligent & Robotic Systems. 2020]

• Robots patrol environment along given
tours

• Data transfer via meeting points
represented as graph (here tree) 

• Determine for each robot when to move, 
wait and transfer

• Move along longest tour without waiting
• Construct schedule beginning with base

station

https://link.springer.com/article/10.1007/s10846-020-01156-6


Various Problem Instances

Minimize latency for given tours and bounded idleness
1. Select tour directions

• Input: tour tree

• Output: directions, schedule

2. Select tree (NP hard)
• Input: tour graph, directions

• Output: tree, schedule

3. Select tree and tour directions (NP hard)
• Input: tour graph

• Output: tree, directions, schedule

4. Select tree, meeting points and tour direction (NP hard)
• Input: tour multi-graph (multiple meeting points between tours)

• Output: tree, directions, schedule

Minimize idleness for given tours and latency constraint

34B. Rinner

[Scherer, Rinner. Multi-UAV Surveillance with Minimum Information Idleness and Latency Constraints. 
IEEE Robotics and Automation Letters. 2020]

https://ieeexplore.ieee.org/document/9121685
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Team Behavior Examples

1. Collision-free and efficient path planning
– Fast and safe constellation changes for many drones

– Optimize for mission time and energy consumption

2. Cooperative route planning for surveillance
– Multi robot routes for persistent surveillance with 

latency, idleness and energy constraints

– Maintain continuous or intermittent connectivity

3. Swarming and synchronization
– Emergent, self-organizing team behavior

– Couple oscillators for joint synchronization and motion
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Selforganization for Drone Swarms

• Synchronization
– Coordination of robots to achieve

order in time domain

– Adjustment of phases 𝜙𝜙𝑖𝑖
• Swarming

– Coordination of robots to achieve
order in space domain

– Adjustment of locations 𝑥𝑥𝑖𝑖
• Swarmalators

– Unified model where robot’s phase and location are mutually coupled

– Emergent space-time patterns

Source: Ars Electronic Center[O’Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

[Barcis, Bettstetter. Sandsbots: Robots That Sync and Swarm. IEEE Access. 2020]

[lead by c. Bettstetter]

https://www.nature.com/articles/s41467-017-01190-3
https://ieeexplore.ieee.org/document/9272969
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Swarmalators

Swarmalators: bidirectional coupling between sync and swarming
The phases 𝜙𝜙𝑖𝑖 influence the movements ̇𝑥𝑥𝑖𝑖, and

the positions 𝑥𝑥𝑖𝑖 influence the phase dynamics 𝜙𝜙𝑖𝑖.

E.g.: Entities with similar phases may attract or repel each other
stronger, and close-by entities may synchronize faster.

Synchronization
The phases 𝜙𝜙𝑖𝑖 of robots 
influence each other.

E.g.: Phases synchronize to a
common value, or “desynchronize”
to differing values (splay states).

Swarming
The locations 𝑥𝑥𝑖𝑖 of robots 
influence each other.

E.g.: Robots physically attract or
repel each other based on their
distance.
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Swarmalator Model

• Phase-dependent movement

• Location-dependent synchronization

Source: Ars Electronic Center
[O’Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Attraction Repulsion

Attraction

with

with

 N nodes indexed by i
 Location xi  and distance xij

 Phase φi and phase diff φij

Behavior is governed by
two parameters  J and K.

https://www.nature.com/articles/s41467-017-01190-3
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Complexity explorable “Swårmalätørs”

[Brockmann: Complexity explorable: Swårmalätørs - Pattern that 
emerge when collective motion and synchronization entangle, 
complexity-explorables.org, 2021.]

[by D. Brockmann]

http://www.complexity-explorables.org/
https://www.complexity-explorables.org/slides/swarmalators/
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Swarmalator Patterns

Source: Ars Electronic Center[O’Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Static sync
(J, K ) = (0.1, +1)

Static async
(J, K ) = (0.1, −1)

https://www.nature.com/articles/s41467-017-01190-3
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Swarmalator Patterns (2)

Source: Ars Electronic Center[O’Keeffe, Hong, Strogatz. Oscillators that sync and swarm. Nature Communications. 2017]

Static phase wave
(J, K ) = (1, 0)

Splintered phase wave
(J, K ) = (1, −0.1)

https://www.nature.com/articles/s41467-017-01190-3
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Swarmalators for Drone Swarms

• From theory to practice
– How to adapt the swarmalator model for use in robotics?

– Does the adapted model lead to identical patterns?

• Limitations of real multi-robot systems
– Movement constraints and speed limitations

– Collision avoidance

– Interactions at discrete times via messages

– Message loss and delay

– Limited communication range

Source: Ars Electronic Center

[Schilcher, Schmidt, Vogell, Bettstetter: Swarmalators with stochastic coupling and memory.
Proc. IEEE Intern. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS), 2021.]

[Barciś, Barciś, Bettstetter: Robots that sync and swarm: A proof of concept in ROS 2.
Proc. IEEE Intern. Symp. on Multi-Robot and Multi-Agent Systems (MRS), 2019.]

[lead by c. Bettstetter]

https://ieeexplore.ieee.org/document/9659518
https://ieeexplore.ieee.org/document/8901095


B.Rinner 43

Deployment on Drones

Source: Ars Electronic Center
Ground robot deployment: [Barcis et al. Robots  that  Sync  and  Swarm:  A  Proof  of  Concept  in  ROS 2. In Proc MRS. 2019]
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Lessons Learnt

• Complexity
– Multi-robot systems perform highly interdependent tasks

– Interdisciplinary research for tackling complexity  

• Methodology
– Experimental research with multi-robot systems is challenging

– Interesting feedback from engineering work to basic research

• Non-technical issues 
– Safety, legal, ethical and regulatory aspects need to be considered

• Perseverance
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Conclusion

• Two step path planning for free and confined environments

• Heuristic route planning for surveillance with connectivity 
constraints

• Swarmalators for emerging synchronization and swarming

• Coordination problems are challenging and fundamental for 
several MRS applications
– Aim for efficient heuristics with performance bounds

– Rely on various (simplifying) assumptions

– Provide still many open research questions



Drone Research at Klagenfurt

• Started in 2008

• Developed into a key research area
– 8 Profs

– >20 PhDs & PostDocs

– Dedicated doctoral school

• Covering various research topics
– Autonomous navigation & coordination

– Mission & path planning

– Wireless communication

– Interaction & various applications

• Opening Europe‘s largest drone hall
– > 1000 m3 flight space

– Motion capturing & 5G connectivity

46B. Rinner
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