
Multi-Agent Path Planning and Trajectory Generation
for Confined Environments

Hikmet Beyoglu, Stephan Weiss, Bernhard Rinner

Abstract— Planning the collision-free, simultaneous move-
ment of multiple agents is a fundamental problem in multi-
robot systems and becomes particularly challenging in highly
confined environments. This paper addresses this problem by
first searching for collision-free paths in a discretized envi-
ronment and then optimizing the agents’ dynamically feasible
trajectories along the discrete paths with respect to energy and
time. Our approach extends the available movement options
at each planning step of the enhanced conflict-based search
and results in shorter path lengths, faster planning times, and
reduced number of waiting events for agents at waypoints. We
compare our new approach with the original algorithm in a
simulation study and investigate the performance in confined
spaces.

I. INTRODUCTION

Multi-agent systems (MAS) gain importance and rele-
vance for various fields and applications. Unmanned aerial
vehicles (UAVs) are a particular MAS field with innovative
applications in transportation, communication, surveillance,
disaster support, and entertainment, to name a few examples
[1], [2], [3], [4]. In all these applications, the behavior of
individual agents needs to be coordinated to complete the
given mission successfully and efficiently [5]. This paper
tackles path planning and trajectory generation as a particu-
lar coordination problem where several agents concurrently
move from a start to an end constellation [6], [7]. These
coordinated, simultaneous movements are highly relevant
in various UAV applications including flight shows, multi-
coverage, and warehouse delivery. We first plan collision-free
paths for all agents in a discrete space and generate then dy-
namically feasible, snap- and time-optimized trajectories for
all UAVs. Figure 1 depicts a low dimensional (for legibility)
constellation change of six agents through a window as an
example.

Our approach is an offline path planning and trajectory
generation method for simultaneous, collision-free, and fast
movement of agents in environments with and without obsta-
cles. Our approach extends the available movement options
at each planning step of enhanced conflict-based search
(ECBS) [8] and results in the following benefits, which are
particularly present in confined environments: shorter path
lengths, faster planning times, and reduced waiting events for

All authors are with the University of Klagenfurt, Aus-
tria (dronehub Klagenfurt: uav.aau.at). Hikmet Beyo-
glu (hikmet.beyoglu@hotmail.com) and Bernhard Rinner
(bernhard.rinner@aau.at) are with the Institute of Networked
and Embedded Systems and Stephan Weiss (stephan.weiss@aau.at) is
with the Control of Networked Systems Group.

This work was partially supported by the EU-H2020 project BUG-
WRIGHT2 (GA 871260)

Fig. 1: Problem sketch. Six agents move concurrently from
start to goal positions pi through a window without colli-
sions.

agents. These waiting events are problematic for generating
energy-efficient and time-optimized trajectories due to de-
celeration, hovering, and acceleration at specific points. Our
contribution can be summarized as follows: (i) a discrete path
planning algorithm dubbed as Extended Enhanced Conflict-
Based Search (EECBS) followed by generating piece-wise,
energy- and time-optimized dynamically feasible continuous
trajectories, (ii) a comparison of the state of the art ECBS
and our EECBS algorithms, and (iii) a demonstration of the
trajectory generation and detailed study of performance in
confined spaces.

The remainder of the paper is organized as follows:
Section II discusses related work. Section III sketches the
problem under study and Section IV describes our path plan-
ning and trajectory generation approach. Section V discusses
the simulation study and Section VI concludes the paper.

II. RELATED WORK

Single and multiple agent path planning in both static and
dynamic environments has been extensively studied (e.g.,
[9]). In general, the goal of all planning algorithms is to
provide collision-free paths for all agents during the mission.
A typical strategy is to formulate planning as an optimization
problem. Particularly, mixed integer linear programming
(MILP) is used to model collision constraints with binary
variables in [10]. However, this approach is computationally
expensive and not suitable for a large number of agents.
Sequential convex programming (SCP) can be used to reduce
the computation time [11]. SCP is also utilized to generate
energy-optimized trajectories for small quadrotor teams in
[12]. While this approach is beneficial for small teams, it

uav.aau.at


does not scale well.
Park et al. [13] discretize the space to perform initial path

planning, build then safe and relative safe flight corridors,
and finally formulate a convex optimization problem to
provide jerk-optimal paths. However, this approach requires a
large total flight distance, even for a small number of agents,
since all agents are arranged to conclude the mission with
the same number of trajectory segments.

Luis et al. [6] propose to use model predictive control
(MPC) for trajectory planning and show that a high success
rate with a moderate computational complexity compared
to the previous methods is possible. They introduce on-
demand collision avoidance with soft constraints to improve
scalability and success rate. Ladinig et al. [7] extend MPC
with potential fields to further improve the success rate and
the transition time.

Robinson et al. [14] apply a combination of the partial
differential equations solver pseudospectral (PS) and a reach-
ability analysis based on the surface method level set (LS)
to generate high-quality and time-optimal trajectories. This
approach is limited to two-dimensional environments, and
its success rate decreases drastically for a large number of
agents. Zou et al. [15] use buffered Voronoi cells (BVC),
where each robot continually computes its cell and plans
its path within the BVC in a receding horizon fashion.
BVC is considerably faster than MPC and SCP approaches,
but can not guarantee a collision-free solution in obstacle-
dense spaces due to deadlocks. Deadlocks in multi-agent
constellation change occur when two or more robots block
each other such that none of them can continue its path
without colliding [16].

As shown in [17], previous work (e.g., [18]) relies on
snap-optimized polynomials as smooth and energy-optimized
trajectories. The polynomial coefficients are determined by
solving a quadratic programming (QP) problem that opti-
mizes a cost function of the path derivatives while main-
taining several constraints. The imposed analytical solution
to the formulated QP problem in [18] has a problematic
issue by generating sensitive coefficients that are arduous and
sometimes impossible to be executed by agents. The issue
drastically increases with long paths requiring the optimizer
to generate piecewise polynomials with many segments as
trajectories. Richter et al. [17] tackle the problem of sensitive
polynomials by a constrained QP problem as a base for
solving a re-formulated unconstrained QP problem to opti-
mize polynomial trajectory segments jointly. This approach
is numerically stable for high-order polynomials and large
numbers of segments.

III. PROBLEM STATEMENT

Figure 1 depicts the problem under study. For a given team
of A agents, we search for trajectories providing simultane-
ous, collision-free, fast, and energy-efficient transitions from
a start to an end constellation.

A group of A agents is located at positions pi for each
agent i ∈ {1, . . . , A} in the Cartesian coordinate system
where a constellation is defined as static and collision-free

positions of all A agents. The environment is limited to a
given flight volume specified by a lower bound pmin and
an upper bound pmax and is discretized with resolution r
into r × r × r cells. The flight volume can contain static
obstacles reducing the available flight volume, i.e., cells
occupied by obstacles can not be entered by any agent.
Collision constraints can be formulated as minimum distance
between agents or agents and obstacles [6]. This constraint
can be simplified in the discretized space by guaranteeing
that no cell in the available flight volume is occupied by
more than one agent. Additionally, the agent dynamics at
any time t adheres to the following physical limits

pmin ≤ pi(t) ≤ pmax

vmin ≤ vi(t) ≤ vmax

amin ≤ ai(t) ≤ amax.

(1)

We adopt the model from [7] for the agent dynamics
described by velocity v(t) and acceleration a(t). In the
discretized space, an agent can move to any of the 26
neighboring cells in one time step, resulting in a movement
in forward, backward, left, right, up, down, and any diagonal
direction in 3D space.

The overall objective is to generate trajectories such that
all agents move concurrently from a start constellation si to
an end constellation ei (i ∈ {1, . . . , A}) satisfying physical
limits and collisions constraints and optimizing flight time
and energy.

IV. PATH PLANNING AND TRAJECTORY GENERATION

We follow a two-step approach for planning the simul-
taneous movement of multiple agents. In a first step, we
plan collision-free paths in discrete space for all agents with
an extension of enhanced conflict-based search. Our EECBS
algorithm operates in a 3D grid topology and exploits 26
adjacencies as potential movement actions (compared to
ECBS using only 6 adjacencies). In a second step, we
generate optimized non-discretized trajectories based on the
EECBS paths. We adopt the formulation of Sharon et al. [19]
for the description of the planning algorithm.

A. Conflict-based search algorithm

Conflict-based search (CBS) is a centralized multi-agent
path finding algorithm that operates on two levels. At the
high level, a search is performed on a conflict tree (CT)
which is a tree based on conflicts between individual agents.
At the low level, fast single-agent searches are performed to
satisfy the constraints imposed by the high level CT node
[19]. These constraints limit the occupation of a vertex and
the movement along an edge in the CT by multiple agents
at the same time [20].

Sharon et al. [19] showed that CBS outperforms traditional
planning algorithms A*, enhanced partial expansion A*, and
increasing cost tree search in terms of the generated paths
length. However, CBS faces problems with scalability and
computation time.



(a) (b)

Fig. 2: Projection of a 3D grid cell topology and the
available movement actions for ECBS (a) and EECBS (b),
respectively.

B. Extended enhanced conflict-based search algorithm

Barer et al. [8] introduced the enhanced CBS (ECBS)
algorithm as an approach to overcome the limitations of CBS
and to control the trade-off between run time and solution
quality. ECBS is a bounded sub-optimal solver which returns
a solution that is guaranteed to be less or equal to w · C∗,
where w = 1+ε is user-defined suboptimality factor and C∗

is the cost of the optimal solution [8].
The idea behind bounded sub-optimal CBS is to shrink

the list of nodes to be examined in both low and high-
level searches based on the focal search (FS), which is a
widely used bounded sub-optimal search algorithm [8]. FS
is organized by two lists of nodes (open and focal) and can
be applied in both low and high-level searches. In low-level
search, the open list includes all possible nodes to be taken
in the graph and the focal list, which is a subset of the open
list, includes all nodes n whose costs will be examined. In
high-level search, the open list includes all possible nodes n
in the conflict tree that can be examined, and the focal list
includes all the nodes that will be examined, i.e., whether
their costs satisfy the condition

f1(n) ≤ w · f1min (2)

where f1min is the minimal f1 value in the open list.
Heuristic f2 is used to select which node from the focal

list to expand. For example, the Euclidean distance to the
goal can be used as f2 in the low level, whereas the node
with the lowest number of conflicts can be used in the high
level. FS is represented as focal_search(f1, f2).

The available movement actions at each planning step
strongly influence the performance of ECBS. To the best of
our knowledge, path planning in a 3D grid based on ECBS
has only used orthogonal movement directions resulting in
6 possible movement actions: left, right, forward, backward,
up and down (e.g., [13]). By including all diagonal move-
ment directions, our EECBS planning algorithm results in
26 available movement actions which significantly enlarges
planning options. Figure 2 depicts the different movement
actions in ECBS and EECBS.

In the following we describe the EECBS algorithm. Con-
sider a node N in a conflict tree. At the low level of EECBS,
the focal search is performed for each agent ai such that
the low level generates paths, based on the extended action
potential set, with cost of at most w · OpenLB,i, where
OpenLB,i is the lower cost bound on the minimal path for ai
that satisfies the set of constraints of conflict tree node N and
is computed by the focal search. Thus, the bound is given
as NLB =

∑k
i=1NLB,i [20]. At the high level, the focal

search is performed with a focal list of all conflict tree nodes
N ∈ open such that Ncost ≤ w · LB. The open list open
includes all potential nodes and LB = minN∈openNLB . LB
is a lower bound on the sum of costs of any conflict-free
solution. If a conflict-free solution is found while expanding
a conflict tree node in the focal list, it is guaranteed to be a
w-approximate of the optimal solution.

Algorithm 1 presents a pseudo code representation of the
EECBS algorithm whose notation is adopted from [20]. In
line 1, the open list is constructed with the root node which is
the first node in the conflict tree that includes a proposed path
for each agent from the low level. Lines 2 and 3 initialize
the open and focal lists with the root node, respectively.
The cost lower bound LB is initialized with the cost of the
root node in line 4. EECBS iterates through the remaining
lines as long as there are nodes in the open list. A node
N with the minimum cost is selected (line 6). If N has
no conflict, a solution is found and EECBS terminates (line
7). Otherwise, N is removed from both lists and the total
cost of N is checked whether it is smaller than the lower
bound LB (line 10). If true, LB is set to the new bound and
nodes that satisfy the new bound are assigned to the focal list
(line 12). Then a conflict from Nconf is selected (line 13),
two child nodes of N are generated, and the A* algorithm
of the low level is called to resolve the conflict (line 15).
This low-level search checks all orthogonal and diagonal
neighboring cells resulting in 26 potential movement actions.
If no solution is found, a waiting event is introduced (line
18). The newly generated children are added to the open list
in line 20. Lines 21 to 23 check if any of the children satisfy
condition 2 and add them to the focal list. Since EECBS
is able to generate paths with diagonal movements, we use
the Chebyshev distance instead of the Manhattan distance as
admissible heuristic.

C. Energy- and time-optimized trajectory generation

EECBS path planning results in sequences of grid cells.
We use the center of these cells as waypoints for the
trajectory generation and perform an optimization process to
generate smooth and energy-efficient flight paths based on
piecewise polynomials. Representing trajectories with poly-
nomials suits highly dynamic ground and aerial robots [17].
Trajectory generation is modeled as a quadratic programming
(QP) problem that optimizes a cost function on the path
derivatives while maintaining a number of constraints. We
adopt techniques used in [17], [21] to generate energy- and
subsequently time-optimized piecewise polynomials.



Algorithm 1: EECBS Path Planning
Input: Planning instance and suboptimality factor w

1 generate root CT node R with an initial solution
2 initialize open list open := {R}
3 initialize focal list focal := {R}
4 LB := RLB

5 while open 6= ∅ do
6 N := CT node with minimum distance in focal
7 if Nconf = ∅ then
8 return Nsol

9 remove N from open and focal
10 if minN∈open{NLB} < LB then
11 LB := minN∈open{NLB}
12 focal := {N ∈ open : NLB ≤ w · LB}
13 pick a conflict in Nconf

14 generate two child CT nodes N1 and N2 of N
15 call low-level-search for each N i and calculate

N i
sol, N

i
cost and N i

conf for i ∈ {1, 2}
16 Low-level perform searches for N i

sol in a 3D grid
cell topology that includes 26 adjacencies.

17 if N i
sol = ∅ then

18 add waiting event
19 perform new low-level search
20 add N i to open for i = 1, 2
21 for i ∈ {1, 2} do
22 if N i

cost ≤ w · LB then
23 add N i to focal
24 return no solution

The trajectory of robot i, pi(t) ∈ R3, can be represented
as M -segment piecewise standard polynomials

pi(t) =



∑7
w=0 cw,1t

w t ∈ [T0, T1]∑7
w=0 cw,2t

w t ∈ [T1, T2]
...∑7

w=0 cw,M t
w t ∈ [TM−1, TM ]

where k is the segment’s number, cw,k is the wth coefficient
in kth segment, such that k ∈ [1,M ], w ∈ [0, 7]. The poly-
nomials in pi(t) are calculated by solving the optimization
function

f i = min
∫ TM

T0

∥∥∥∥dkrpi

dtkr

∥∥∥∥2
2

dt (3)

as a QP. Similar to [7] we minimize the integral of the
square of the norm of the snap (kr = 4) resulting in a
7th order polynomial. Snap-optimized polynomial splines are
effective quadrotor trajectories, since the motor commands
and attitude accelerations of the vehicle are proportional to
the snap [18]. The following constraints are imposed for the
optimization:
• Pre-selected initial and goal waypoints constraints

pik=1(T0) = si , p
i
k=M (TM ) = ei

where si is the start position and ei is the end position
of agent i.

• Intermediate waypoints continuity constraints for posi-
tion, velocity, acceleration and jerk:

p
(n)
k−1(Tk) = p

(n)
k (Tk) , n = 0, 1, 2, 3

• Velocity, acceleration, and jerk should be zero at the
start and goal waypoints for all agents in the mission.

drpi (t)

dtr

∣∣∣∣
t=j

= 0 , j = T0, TM ; r = 1, 2, 3

• Physical limit constraints (1).

More specific constraints, such as downwash or safety dis-
tances, can be added if needed.

V. SIMULATION STUDY

We evaluate the performance of the EECBS path planning
algorithm with three different scenarios. The first scenario
compares EECBS with ECBS in obstacle-free environments
under various space resolutions. The second scenario shows
the EECBS behavior in environments with randomly located
obstacles at various densities. The third scenario investigates
the EECBS behavior for constellation changes through a
window with various sizes.

A. Simulation setup

We adopted and extended the code by Vedder et al. [22]
and Park et al. [23] for the implementation of our EECBS
algorithm. We implemented the simulation framework in
Python 3.9.6 and performed all simulations on an Intel Core
laptop with 8 GB RAM running at 2.60 GHz.

Our evaluation is based on the following performance
parameters. The success rate corresponds to the percentage
of successes over all simulated cases, i.e., the number of
collision-free constellation changes over all simulated sce-
narios. The total cost is equal to the aggregated path lengths
of all agents in a scenario where the path length is measured
by the number of traversed waypoints. The cost per agent
is equal to the average path length of a single agent in a
scenario, and the longest path corresponds to the agent with
maximal cost, i.e., the longest path of an agent for a scenario.
The number of waiting events is the number of waypoints
along the agents’ paths where an agent has to wait in order to
avoid a collision with another crossing agent. The run time
corresponds to the time required for computing the paths of
all agents for a constellation change.

In our simulation study we varied the number of agents,
the resolution of the 3D environment, and the density or
size of obstacles. Each simulation is executed 30, 10, and 10
times in obstacle-free, obstacle-dense, and window-crossing
environments, respectively, and the start and end positions
of the constellation and the obstacles (for the second sce-
nario) are placed randomly. We use the mean values of the
performance parameters in our simulation study.



B. Obstacle-free environment
For the comparison of ECBS and EECBS in obstacle-free

environments we computed paths for constellation changes
for 1 to 100 agents in discretized 3D environments with res-
olution r ∈ {8, 20, 100}. Thus, the environment is composed
by either 8× 8× 8, 20× 20× 20, or 100× 100× 100 cells.
Figure 3 shows that EECBS is superior to ECBS in these
scenarios.

1) Success rate: Both ECBS and EECBS achieve a 100%
success rate for all cases starting from 1 up to 100 agents,
under all studied resolution scenarios in an obstacle-free
environment.

2) Total cost: As Figure 3a shows the total cost of ECBS
and EECBS almost linearly increases with the number of
agents. Due to the increased number of movement actions
available, EECBS outperforms ECBS in all cases. In partic-
ular, EECBS achieves a total cost reduction of 56%, 54% and
54% in environments with resolution 8×8×8, 20×20×20
and 100× 100× 100, respectively.

3) Cost per agent: Figures 3b depicts the cost per agent as
a function of the number of agents of ECBS and EECBS. The
achieved cost per agent is approximately constant for both
algorithms. EECBS outperforms ECBS in all cases, i.e., by
46%, 48% and 46% in environments with resolution 8×8×8,
20× 20× 20 and 100× 100× 100, respectively.

4) Longest path: Figures 3c shows the longest path as
a function of the number of agents for ECBS and EECBS.
For both algorithms the longest paths slightly increase with
growing number of agents. Similarly to the previous perfor-
mance parameters, EECBS outperforms ECBS in all cases.
EECBS is able to reduce the longest path by 47%, 50% and
50% in environments with resolution 8×8×8, 20×20×20
and 100× 100× 100, respectively.

5) Waiting events: Figure 3d depicts the introduced wait-
ing events at waypoints along the generated paths to avoid
collisions with crossing agents. In general, the number of
waiting events increase with increasing number of agents
and decreasing resolution, because the likelihood of cross-
ing agents increase in environments with dense paths. The
difference between ECBS and EECBS is most noticeable
for r = 8, where ECBS introduces 17 waiting events and
EECBS less than 3 waiting events on average. This difference
decreases for r = 20 to 1 waiting event for EECBS and 2
waiting events for ECBS, respectively. Both algorithms avoid
introducing waiting events for r = 100.

6) Run time: Figures 3e shows the run time for different
resolutions for the path generation in our simulation frame-
work as a function of the number of agents. For all three
resolutions the run time of ECBS and EECBS is almost
identical for 1 to 45 agents. For larger number of agents,
the run time for ECBS increases faster than for EECBS. It
is worth mentioning that the ECBS run time has a larger
variation, which can be recognized by fluctuation of the
run time (mean) values. This effect is particularly strong
for r = 100 and is caused by a large number of potential
conflicts in the ECBS search. Thus, even though EECBS
needs to check more options (26 versus 6), the reduction

in conflicts to solve due to the added evasion options has a
higher impact on the run time making EECBS the winning
method.

C. Environment with obstacles

In this scenario we evaluate the performance of EECBS in
environments with randomly placed obstacles. We are par-
ticularly interested in identifying performance degradation in
obstacle-dense environments. In this study, obstacles have a
fixed size of 2 neighboring cells and are randomly placed in
the environment. The occupancy of the obstacles is varied
from 0% to 95% of the available environment which means
that 0% to 95% of all cells are occupied by obstacles. We
computed paths for constellation changes of 1 to 50 agents
in environments with resolution r ∈ {12, 50}. Figure 4
summarizes the performance of EECBS in an environments
with these resolutions.

1) Success rate: EECBS is able to achieve a 100%
success rate for all simulated cases with 1 to 50 agents,
varying obstacles occupy and environments with 12×12×12
and 50× 50× 50 resolution.

2) Total cost: Figure 4a shows the total cost of the
generated paths as a function of the number of agents.
The total cost linearly increases independent of the obstacle
occupancy in the environment. The aggregated average path
length (total cost) is naturally larger in environments with
larger resolution.

3) Cost per agent: Figures 4b depicts the cost per agent
as a function of the number of agents. EECBS cost per
agent slightly varies for all numbers of agents independent
of the obstacle occupation. The average path length (cost per
agent) is approximately 6 and 25 for resolutions 12 and 50,
respectively.

4) Longest path: Figure 4c shows the longest path as
function of the number of agents. The length of the longest
path increases for a low number of agents and saturates to 11
and 44 waypoints for constellation changes with more than
15 agents for resolutions 12 and 50, respectively.

5) Waiting events: As can bee seen in Figure 4d, EECBS
hardly introduces waiting events. The maximum average
number is less than 0.1 for all simulated constellation
changes in an environment with r = 50. In an environment
with r = 12, the number of waiting events slightly increase
with the number of agents. Even with an occupation of
80% the waiting events do not exceed 1 waypoint for large
constellation changes.

6) Run time: Figure 4e shows the run time for the path
generation in our simulation framework as a function of the
number of agents. The run time as well as the variation of
the mean run time increase with the number of agents. The
mean value stays below 2.1 seconds for the environment with
r = 50. For an environment with r = 12 the mean run time
is always less than 0.1 seconds.

D. Constellation change through a window

We finally evaluate the performance of EECBS for con-
stellation changes through a window with variable size.



(a) Total cost (b) Cost per agent (c) Longest path

(d) Waiting events (e) Run time

Fig. 3: Comparison of ECBS and EECBS in obstacle-free environments with three different resolutions r ∈ {8, 20, 100} for
1 to 100 agents. Legend: — ECBS 8× 8× 8; — EECBS 8× 8× 8; — ECBS 20× 20× 20; — EECBS 20× 20× 20; —
ECBS 100× 100× 100; — EECBS 100× 100× 100.

In this scenario the window is placed in the center of
the environment and start and end positions are randomly
placed on the opposite sides of the window such that every
agent must pass through the window. The window border
percentage D represents the ratio of window border area
over the entire cross section area. Figure 5 depicts a window
with a 2-cell border in an environment with r = 12 resulting
in a window border percentage D = 55%. We computed
the paths for constellation changes of 1 to 50 agents in
environments with resolution r ∈ {12, 100}.

1) Success rate: EECBS achieves a 100% success rate for
all window border sizes in the 100×100×100 environment.
In the 12×12×12 environment, EECBS is not able to achieve
100% success rate for an 80% window border percentage
(cp. Figure 6e). Due to the tight space limitations of this
scenario, the success rate significantly drops for more than
24 agents and EECBS can not find a solution for more than
41 agents. Consequently, the graph of the other performance
parameters in Figure 6 terminate at 41 agents.

2) Total cost: As depicted in Figure 6a the total cost
linearly increases with the number of agents for both en-

vironment resolutions. In the most confined scenario with
r = 12 and D = 80%, the total cost increases more than in
the other cases.

3) Cost per agent: A similar behavior can also be seen
for the cost per agent (Figure 6b). Except for the most
confined scenario, the average path length slightly varies
around values which are almost identical.

4) Longest path: Figure 6c depicts the length of the
longest path as function of the number of agents. In general,
the longest path increase with a low number of agents and
remains then almost constant. However, the scenario with
r = 12 and D = 80% results in a steadily increasing longest
path.

5) Waiting events: EECBS does hardly introduce any
waiting events in the environment with r = 100. In the
low resolution environment EECBS needs to include a few
waiting events for successful path planning. The severe
planning restrictions can also be seen by the significant
increase of waiting events for window border size D = 80%.

6) Run time: The run time is a good indicator for the
complexity of the path planning problem. We can classify our



(a) Total cost (b) Cost per agent

(c) Longest path (d) Waiting events

(e) Run time

Fig. 4: Performance of EECBS in 12× 12× 12 and 50× 50× 50 environments with varying obstacle occupancy.

Fig. 5: Constellation change of 4 agents through a window.

scenarios into three categories. Scenarios with r = 12 and
D ∈ {0%, 20%, 40%, 60%} (Figure 6f left) can be solved in
less than 0.25 s. Scenarios with r = 100 can be solved in less
than 0.8 s for D = 0% but require up to 450 s for D = 95%
(Figure 6f right). Finally, Figure 6f center depicts a dramatic
increase of the run time when the success rate starts to drop.
In this case, EECBS traverses many unsuccessfully many
branches in the conflict tree resulting orders of magnitude
larger run times.

E. Example: Trajectory generation

Figure 7 depicts a constellation change example of 10
agents in an environment with resolution r = 8. The
trajectories have been optimized based on Equation 3 and
result in an overall transition time of 9.1 s. The trajectories
fulfill all optimization constraints and allow collision-free,



(a) Total cost (b) Cost per agent

(c) Longest path (d) Waiting events

(e) Success rate (f) Run time

Fig. 6: Performance of EECBS in environments with resolution r ∈ {12, 100} and varying window border size D ∈
{0%, 20%, 40%, 60%, 80%, 95%}.

synchronous movement of the ten agents. Figure 8 shows the
required velocity and acceleration of an agent for traversing
the trajectory. Both velocity and acceleration stay below the
actuator limits of 1 m/s and 1 m/s2, respectively.

VI. CONCLUSION

We present a multi-agent path planning and trajectory gen-
eration approach for constellation changes in environments
with and without obstacles. As demonstrated in our simula-
tion study, the proposed EECBS algorithm achieves improve-
ments over the traditional ECBS algorithm. In obstacle-free
environments, total cost, average cost, and longest path were
reduced by approximately 50% in all considered resolutions.
Furthermore, EECBS hardly introduces waitings to avoid
collisions and computes the paths in shorter run times.

The improvements of our EECBS algorithm, i.e., shorter
path lengths, faster planning times, and reduced waitings
of agents, become particularly present in environments with
scarce space to move, i.e., in confined environments charac-
terized by low resolution, high obstacle density, and many
agents. These improvements are primarily due to the in-
creased movement actions at each planning step as compared
to the original ECBS algorithm. Consequentially, EECBS
was able to find collision-free paths in almost all simulated
scenarios—except for constellation changes of more than 40
agents through a window with D = 80% and r = 12. We
finally demonstrate the trajectory generation by a snap- and
time-optimization of the discrete, multi-agent paths.

We foresee several directions as future work. First, we
deploy the generated trajectories on real UAVs, such as



Fig. 7: Trajectory generation for a constellation change scenario. EECBS returns discrete paths for all agents (left). The
waypoints of these paths serve as input for snap-optimized trajectory generation (right).

Fig. 8: Velocity and acceleration of an agent following its
trajectory.

Crazyflie drone platforms, and compare the simulation re-
sults with real experiments. Second, we evaluate other graph-
based planning algorithms for environments with scarce
mobility space and perform more complex optimizations for
the trajectory generation.

REFERENCES

[1] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of
multi-UAV systems in cyber-physical applications: A comprehensive
survey and future directions,” IEEE Commun. Surveys & Tutorials,
vol. 21, no. 4, pp. 3340–3385, 2019.

[2] B. Rinner, C. Bettstetter, H. Hellwagner, and S. Weiss, “Multidrone
systems: More than the sum of the parts,” IEEE Computer, vol. 54,
no. 5, pp. 34–43, 2021.

[3] P. Mazdin and B. Rinner, “Distributed and communication-aware
coalition formation and task assignment in multi-robot systems,” IEEE
Access, vol. 9, pp. 35 088–35 100, 2021.

[4] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe
moving targets: Review,” IEEE Transactions on Cybernetics, vol. 48,
no. 1, 2018.

[5] Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous
multi-robot systems: A survey,” ACM Computing Surveys (CSUR),
vol. 52, no. 2, pp. 1–31, 2019.

[6] C. Luis and A. Schoellig, “Trajectory generation for multiagent point-
to-point transitions via distributed model predictive control,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382, 2019.

[7] P. Ladinig, B. Rinner, and S. Weiss, “Time and energy opti-
mized trajectory generation for multi-agent constellation changes,” in
Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA), 2021.

[8] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in The International Symposium on Combinatorial Search
(SOCS), 2014.

[9] R. K. Dewangan, A. Shukla, and W. W. Godfrey, “Survey on
prioritized multi robot path planning,” in Proc. IEEE International
Conference on Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials (ICSTM), 2017, pp.
423–428.

[10] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Proc. European
Control Conference (ECC), 2001, pp. 2603–2608.

[11] Y. Chen, M. Cutler, and J. How, “Decoupled Multiagent Path Planning
via Incremental Sequential Convex Programming,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2015,
pp. 5954–5961.

[12] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2012, pp. 1917–1922.

[13] J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient multi-agent
trajectory planning with feasibility guarantee using relative bernstein
polynomial,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 434–440.

[14] D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, “An
efficient algorithm for optimal trajectory generation for heterogeneous
multi-agent systems in non-convex environments,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1215–1222, 2018.

[15] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[16] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180), vol. 3, 2001, pp. 1213–1219 vol.3.

[17] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
Proc. International Symposium of Robotics Research, 2016, pp. 649–
666.

[18] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proc. IEEE International Conference
on Robotics and Automation, 2011, pp. 2520–2525.

[19] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[20] T. Huang, B. Dilkina, and S. Koenig, “Learning node-selection strate-
gies in bounded-suboptimal conflict-based search for multi-agent path
finding,” in Proc. International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2021, pp. 611–619.

[21] W. Hönig, “UAV trajectories,” https://github.com/whoenig/uav_
trajectories, 2019.

[22] W. Hönig, K. Vedder, and B. Şenbaşlar, “libMultiRobotPlanning,”
https://github.com/whoenig/libMultiRobotPlanning/tree/
79678825103cf944979d5d83657770d83b907afa, 2019.

[23] J. Park and J. T. Torres, “swarm simulator,” https://github.com/
qwerty35/swarm_simulator, 2020.

https://github.com/whoenig/uav_trajectories
https://github.com/whoenig/uav_trajectories
https://github.com/whoenig/libMultiRobotPlanning/tree/79678825103cf944979d5d83657770d83b907afa
https://github.com/whoenig/libMultiRobotPlanning/tree/79678825103cf944979d5d83657770d83b907afa
https://github.com/qwerty35/swarm_simulator
https://github.com/qwerty35/swarm_simulator

	Introduction
	Related Work
	Problem Statement
	Path Planning and Trajectory Generation
	Conflict-based search algorithm
	Extended enhanced conflict-based search algorithm
	Energy- and time-optimized trajectory generation

	Simulation Study
	Simulation setup
	Obstacle-free environment
	Success rate
	Total cost
	Cost per agent
	Longest path
	Waiting events
	Run time

	Environment with obstacles
	Success rate
	Total cost
	Cost per agent
	Longest path
	Waiting events
	Run time

	Constellation change through a window
	Success rate
	Total cost
	Cost per agent
	Longest path
	Waiting events
	Run time

	Example: Trajectory generation

	Conclusion
	References

