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Abstract—Real-time and accurate position estimation is critical
for various multi-robot applications and serves as a prerequisite
for location-based multi-sensor data analysis. However, it is
often impeded by energy, sensing, and processing limitations.
In this work, we study the problem of information-seeking in
localization and navigation in multi-agent systems, which aims
to navigate mobile agents while reducing position errors. We
formalize information-seeking as reducing spatial uncertainty
and introduce an efficient motion controller based on arti-
ficial potential fields superimposing attractive, repulsive, and
information-seeking forces. We evaluate the effect of information-
seeking on localization and mission planning in a simulation study
with non-collaborative and collaborative localization approaches.

Index Terms—Multi-robot system; Cramér–Rao bound (CRB);
Fisher information; spatial uncertainty; artificial potential fields

I. INTRODUCTION

Position information is essential for many robotic systems
since it strongly influences the robot’s performance during
task and mission execution. The availability of accurate po-
sition information is highly relevant in multi-robot systems
where mission planning strongly depends on the position of
the individual robots (e.g., [1]–[3]). It is also an important
prerequisite for capturing, processing, and distributing multi-
sensor data as its analysis often depends on location. Examples
for location-based multi-media capturing, processing and dis-
tribution in multi-robot systems include automated multi-view
drone cinematography [4], adaptive-video streaming in search-
and-rescue applications [5], and networking and multi-media
data distribution [6]. Satellite-based positioning systems such
as GPS have been widely applied, but face known limitations
concerning availability in indoor environments, accuracy, and
resource requirements.

Network localization and navigation (NLN) [7] addresses
this challenge of ubiquitous positioning in GPS-denied envi-
ronments. According to NLN, a mobile node is able to infer
its position by performing pairwise measurements with anchor
nodes and other mobile nodes (i.e., spatial cooperation), and
temporal filtering based on state-evolution models (i.e., spatio-
temporal cooperation). Cooperation among mobile nodes im-
proves the accuracy and the reliability of the position estimates
[8] while eluding the necessity for intensive resources.

Considering navigation, there has been a considerable
amount of research in control of multi-agent systems [9].

Fig. 1: Information-seeking localization and navigation with
three anchors and one agent. The agent moves via waypoints
A and B towards the goal in such a way that it reduces the
uncertainty about its position.

Examples of such works focus on achieving mission objectives
(e.g., goal approaching) while the agents maintain specific
formations and avoid collisions with bio-inspired techniques
such as flocking. The majority of these works consider the
agents’ locations to be known or augment them with noise
to probe the robustness of the controller. There are only a
few works that consider improving localization accuracy. For
instance, Kim et al. [10] indirectly improve localization by
optimizing the rigidity of a multi-agent system, while Meyer
et al. [11] optimize the locations of the mobile agents by
applying information-seeking in order to improve their own
localization and the tracking of a target. Zhang et al. [12]
focus on optimizing the positions of a swarm as a whole that
uses Ultra-Wide band ranging technology to augment position
information.

In this work, we consider systems that are able to perform
RF-based range measurements via received signal strength
[13] and formalize a lightweight controller that is aware of
localization uncertainty. Our approach allows mobile nodes
to accomplish their primary tasks (e.g., goal approaching and
collision avoidance) while allowing them to navigate in a
way that reduces the localization estimation error as illus-
trated in Fig. 1. In particular, we formalize the information-
seeking artificial potential fields (IS-APF), by introducing the



information-seeking force to the scheme. We show analytically
how to derive the forces and conduct extensive simulations
commenting on the emerged behaviors of the mobile agents.

II. PROBLEM FORMULATION

In general, robotic systems operate in three dimensions
(3-D) but for the sake of simplicity we consider a wireless
localization network that resides in a two-dimensional (2-
D) space. The network is composed of two types of nodes:
Na mobile agent nodes that require localization throughout
their mission and Nb anchor nodes that have perfect knowl-
edge of their position. Thus, the total number of nodes is
N = (Na + Nb). Furthermore, we denote the position of
node k by pk ∈ R2 and the global location vector as X =
[pT1 , p

T
2 , . . . , p

T
Na, p

T
Na+1, p

T
Na+2, . . . , p

T
Na+Nb].

A. Localization

For every node i, N − 1 received signal strength measure-
ments to all other nodes j are available

P̂i,j = P0 + 10np · log(
di,j
d0

) + ni,j (1)

where P0 is the received power at a reference distance d0.
The parameter np = [2,. . . ,4] is the pathloss exponent, di,j
is the Euclidean distance between nodes i and j, and ni,j

represents additive white Gaussian noise with µdB = 0 and
σ2
dB . We assume reciprocal signal strength measurements, i.e.,

Pi,j = Pj,i. We can convert the received signal strengths to
distances by rearranging Equ. 1

d̂i,j = 10

(P0 − P̂i,j)

10np . (2)

Furthermore, we define a connectivity vector Hk(j) for
every agent k with j ∈ {1, . . . , N} where Hk(j) = 1 if
d̂k,j < sens range else Hk(j) = 0.

The positions of the agents are estimated at each time step
with a weighted least squares (WLS) estimator [14]

p̂ = argmin
p

Na∑
k=1

{ Na∑
i=1

Hk(i)
1

wki
(d̂ki − ∥pk − pi∥)2

+

N∑
j=Na+1

Hk(j)
1

wkj
(d̂kj − ∥pk − pj∥)2

} (3)

where wki and wkj are weights defined as
√

(σ2
pos + σ2

dist)

with σpos the position estimate variance and σdist the distance
measurement variance, used to reflect the reliability of a
measurement. Naturally, the position variance σ2

pos for the
anchors is zero.

B. Dynamic System Formulation

The state of a generic node at time step t is its two-
dimensional position (i.e., p(t)k = [x

(t)
k , y

(t)
k ]T ). While the po-

sitions of the anchor nodes are known and fixed, the positions
of the mobile agents are to be estimated and controlled. The

agents move in a step-wise fashion according to the following
movement model

p
(t+1)
k = p

(t)
k + u

(t)
k + ν

(t)
k (4)

where uk is the control command and νk ∼ N(0, σ2
tr) the

transition noise at time step t. The control command is
derived as the superposition of the attractive, repulsive, and
information-seeking forces

u
(t)
k = µ(f (t)

a (k) + f (t)
r (k) + f

(t)
is (k)) (5)

with µ as step size. We perform the state transition in single
time steps using global force vectors fa, fr, fis ∈ R2×Na

for all agents. In the following section, we show how to
calculate the forces for every agent (cp. Fig. 2) which are
then superimposed to form the global force vectors.

III. MULTI-AGENT SYSTEM CONTROLLER FORMULATION

A. Artificial Potential Fields
Artificial potential fields (APF) [15] is a well-known online

path planning method where the environment is modelled by
attractive and repulsive potentials and the robot moves towards
the goal following the superposition of the two potential fields.

The attractive potential of agent k is a function of the
agents’ position pk and its respective goal location pgk and
can be expressed as

Ua(k) = za ∥pgk − pk∥ (6)

where za is a scaling factor. We assume that the agent has
reached a goal location if ∥pgk − pk∥ <= goalthres. The
attractive force fa(k) is the negative gradient of the attractive
potential

fa(k) = −∇Ua(k) = za
pgk − pk
∥pgk − pk∥

. (7)

The repulsive potential is a function of the agents’ position
and obstacles or other agents that need to be avoided. The
potential can be expressed as

Uri(k) =

{
zr
2 (

1
dki

− 1
ηthres

)2, dki ≤ ηthres

0, dki > ηthres
(8)

where zr is a scaling factor, ηthres is the influence range of the
repulsive potential and dki is the Euclidean distance between
agent k and agents (or obstacles) i with i ∈ {1, . . . , N} and
k ̸= i.

Similarly, the repulsive force fr is defined as the negative
gradient of the repulsive potential

fri(k) = −∇Uri(k) =

{
zr
d2
ki
( 1
dki

− 1
ηthres

)∇dki, dki ≤ ηthres

0, dki > ηthres.
(9)

When an agent is in the influence realm of one or more
obstacles the total repulsive potential fTr of agent k is equal
to:

fTr(k) =

N∑
i=1

fri(k) (10)



Fig. 2: The derived forces for our example scenario: (left) attractive force field in red, (center) repulsive force field in green,
and (right) information-seeking force field in blue. Note that the force fields have been normalized for better readability.

B. Information Seeking
To account for localizability in the controller, we employ the

mathematical tools of Fisher information (FI) theory and the
Cramér–Rao bound (CRB). The CRB represents a theoretical
limit of the best possible localization variance of any unbiased
estimator with the following relation

E[|p− p̂|]2 ≥ CRB = trace(F−1
p ) (11)

where Fp is the Fisher information matrix [8].
The aim of information seeking is to derive a force field

that can direct an agent towards locations with minimal CRB.
We follow a gradient approach to compute such field

∇CRB =
∂trace(F−1

p )

∂p
. (12)

As noted in e.g., [16], (i) the derivative of a trace function
of matrix A is the trace of the derivative

∂trace(A)

∂p
= trace(

∂A

∂p
), (13)

and (ii) the derivative of the inverse of A is equal to

∂A−1

∂p
= −A−1 ∂A

∂p
A−1. (14)

Thus, the derivative of the CRB can be computed as

∂CRB

∂p
= −F−1

p

∂Fp

∂p
F−1
p . (15)

By adopting [17] we compute the Fisher information matrix
(FIM) and its partial derivatives with the following steps.

STEP 1: Calculate the partial derivatives of the Fisher
information sub-matrices. Form six NA×NA matrices: dxFxx,
dxFxy , dxFyy for the x-axis and dyFxx, dyFxy and dyFyy

for the y-axis.
The sub-matrices for the x-axis can be computed as follows:
[dxFxx]k,l ={
γ
∑

iϵHk
2((xk − xi)d

2
k,i − 4(xk − xi)

3)/d6k,i k = l

−γHk(l)2((xk − xl)d
2
k,l − 4(xk − xl)

3)/d6k,l k ̸= l

[dxFxy]k,l ={
γ
∑

iϵHk
((yk − yi)(d

2
k,i − 4(xk − xi)

2)/d6k,i k = l

−γHk(l)((yk − yl)(d
2
k,l − 4(xk − xl)

2)/d6k,l k ̸= l

[dxFyy]k,l ={
γ
∑

iϵHk
−4(xk − xi)(yk − yi)

2/d6k,i k = l

γHk(l)4(xk − xl)(yk − yl)
2/d6k,l k ̸= l

(16)

We apply the same calculations for the second dimension.
Note that γ is a channel parameter and is equal to

((10np)/(σdBlog10))
2 and k, l are the indices of the matrix

elements.
STEP 2: Merge the sub-matrices to form the partials of the
FIM along the x and y axis. We create two 2NA × 2NA

matrices which hold the derivative of the FIM along the x
and y axis, respectively:

Fdx =

[
dxFxx dxFxy

dxFT
xy dxFyy

]
, Fdy =

[
dyFxx dyFxy

dyFT
xy dyFyy

]
(17)

STEP 3: Calculate the gradient components for every agent.
We calculate the derivatives of the CRB along the x and y
axis as:

CRBdx = −F−1
p FdxF

−1
p

CRBdy = −F−1
p FdyF

−1
p

(18)

Then, the gradient components for an arbitrary agent k are
given by:

cis(k) =

[
CRBdx(k, k) + CRBdx(k +Na, k +Na)
CRBdy(k, k) + CRBdy(k +Na, k +Na)

]
(19)

Finally, the information seeking force for agent k is given as

fis(k) = −zis
cis(k)

∥cis(k)∥
(20)

where zis, is a weighting scalar.



IV. SIMULATION STUDY

We developed a simulation environment in Python to eval-
uate our IS-APF-based controller. A simulation is initialized
with the desired locations of the agents, their respective goal
locations, and the locations of the anchors. Table I summarizes
the key simulation parameters. The controller is evaluated at
every location and the agents move in a step-wise fashion.
We perform hundred location estimations at every location to
compute the root mean square error (RMSE). The simulation
is terminated when the agents have completed successfully
their missions or a mission duration threshold is reached.

We evaluate two simulation scenarios. In the non-
collaborative scenario, a mobile agent has to navigate in an
environment by performing range measurements with three
anchor nodes in order to localize itself. In particular, the
agent’s mission is to pass through a number of predefined
way-points, and connectivity to the anchor nodes is given
throughout the mission. In the collaborative scenario two
mobile agents have to complete their individual mission (i.e.,
sequence of way-points) in an environment with five anchors.
Due to the settings of the mission, the agents intermittently
lose connectivity to some anchor nodes as well as to each
other.

We study the influence of information-seeking on the spatial
uncertainty of the agents while navigating through the environ-
ment. We compare both scenarios under ideal conditions (i.e.,
perfect transition and localization) and under more realistic
conditions (i.e., imperfect transition and estimated positions).

Table I: Simulation settings.

Ranging IS-APF
P0 = −36 dB za = 1
d0 = 1m zr = 50
np = 2.3 zis = [0.0, ..., 0.9]

σdb = 0.5 dB ηthres = 4m
sens range = 30m goalthres = 0.10m

- σtr = 10−3 m
- µ = 0.2

A. Discussion

1) Non-collaborative scenario: Fig. 3 (a) shows the effect
of information-seeking on the mission paths by our IS-APF
controller using the agent’s true position data. The blue line
represents the path of a traditional APF controller (without
information-seeking) whereas the other colors represent paths
with different weights for information-seeking. The IS-APF
controller generates paths that reach the navigation way-points
with lower spatial uncertainty (i.e., reducing the CRB). In
some more detail, information-seeking reduces the effect of
adverse geometry for localization along the first segment
(avoid moving closely along the line between the two upper
anchors). For the other two segments, information-seeking
aims to move towards localization sweet spots (positions
with low CRB within the anchor triangle). The paths deviate

stronger from the traditional case with increasing information-
seeking weights. Consequently, path length and mission dura-
tion increase as well (cp. Fig. 4).

Fig. 3 (c) depicts the lower bound on the RMS of localiza-
tion error (

√
tr(CRB)/Na) while the agent moves along the

path. We can identify way-point A as the maximum value in
these graphs and way-point B as the local maximum after the
global minimum. The reduction of the spatial uncertainty can
be clearly seen in the first segment and in the second segment
where the global minimum decreases with increasing weight.
This is also indicated with the red dotted line.

Fig. 3 (b) shows the effect of information-seeking on the
mission paths by our IS-APF controller using the agent’s
estimated position data. We can observe a similar trend of
the paths, but the executed trajectories include quite some
fluctuations imposed by the noisy position estimation. Further-
more, there are some oscillations when agents approach the
way-points. These oscillations result from inaccurate distance
measurements, transition noise and the conical attractive force
which can cause the agent to overshoot the target. Fluctuations
and oscillations significantly increase the path length and
mission duration (cp. Fig. 4). As depicted in Fig. 3 (d),
strong fluctuations can also be observed in the estimated RMS

error which is given as
√
E{∥p− p̂∥2}/Na for each step.

In comparison with Fig. 3 (c), the global minima do not
significantly decrease with increasing weights.

2) Collaborative scenario: In the collaborative scenario,
the information-seeking force field becomes dynamic as it
is influenced by mobile agents. Fig. 5 depicts the CRB
values for this scenario. However, no clear CRB reduction
with increasing zis is observable as in the non-collaborative
scenario. Two elongated periods with low CRB values occur
for zis = 0.4 and 0.7. This is visible in Fig. 6 (b) were the
trajectory of the agent in blue persists above the middle anchor
throughout the mission.

As shown in Fig. 6, the agents perform their individual
missions avoiding collision with each other and the center
anchor node. For zis = 0.4, the trajectories become curvier
due to the information-seeking force pulling the agents towards
locations of lower CRB. Additionally, in this particular collab-
orative scenario, the mission time does not necessarily increase
with zis (see Fig. 5) as was observed in the non-collaborative
scenario. Due to the information-seeking force completely
different paths can be chosen. If the IS-APF controller uses
position estimates (see Fig. 6 (c,d)) the agents maintain the
nominal path in general, but oscillations appear when agents
approach way-points. In extreme cases, oscillations may con-
tinue for long periods, and the agent is not able to complete
its mission.

V. CONCLUSIONS AND FUTURE WORK

In this work we extended the APF controller to account for
reducing the spatial uncertainty by introducing an information-
seeking potential. We analytically derived the different force
fields and conducted a simulation study on a non-collaborative



(a) (b)

(c) (d)

Fig. 3: Comparison of the computed paths through way-points A, B, and C with different weights for the information-seeking
force field (top row) and the position uncertainty of the agent expressed by the CRB (bottom row). Plot (a) shows the paths
executed by our IS-APF controller using the agent’s true position, whereas plot (b) shows paths derived from estimated agent’s
positions. Graph (c) depicts the CRB along the mission executed using the true positions and graph (d) depicts the estimated
RMS error of the agent’s position.

Fig. 4: Simulation steps required to complete the mission for
the IS-APF controller using the true agent’s positions (blue)
and the estimated positions (orange) with different weights zis.
Whiskers represent the standard deviation of 100 simulation
runs.

Fig. 5: CRB plot of the collaborative scenario. Elongated
periods of low CRB values are achieved for zis = 0.4 and
0.7. Note that the mission duration is shorter for zis = 0.8
than for zis = 0.8.



(a) zis = 0.0. (b) zis = 0.4.

(c) zis = 0.0. (d) zis = 0.4.

Fig. 6: Comparison of the of the executed paths in the collaborative scenario. The top row shows the paths based on true
position data, whereas the bottom row shows paths based on estimated position. The left column shows paths generated from
a traditional APF controller, whereas the right column shows the graphs with IS-APF controller with zis = 0.4.

and collaborative localization scenario. We showed that IS-
APF, can be used by agents to safely navigate the environment
while minimizing spatial uncertainty.

As future work we plan to further improve the IS-APF
controller by dynamically adapting the weights to avoid the an-
tagonizing effect of attractive and information-seeking forces
and by introducing a combinatorial attractive potential [15]
with smoother force profiles near way-points. Finally, we want
to deploy information-seeking in multi-robots and support
location-based multi-media analysis.
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