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Towards Self-Awareness in Multi-Robot Systems
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I. INTRODUCTION

Self-awareness (SA) is a broad concept borrowed from
cognitive science and psychology that describes the property
of a system, which has knowledge of “itself,” based on its
own senses and internal models. This knowledge may take
different forms, is based on perceptions of both internal
and external phenomena, and is essential for being able to
anticipate and adapt to unknown situations [2]. Deploying
this concept on robots poses some fundamental challenges
and requires some key capabilities of autonomous robots:
(1) learn inference models from sensor inputs, (2) infer
its state and the environment’s state based on the models,
and (3) detect abnormalities between observed and inferred
behaviors. An abnormality detection may indicate a new
phenomena observed by the robot and trigger the creation of
a new model. Over time the robot acquires a set of models
representing different phenomena.

This work proposes a framework towards self-awareness
in multi-robot systems and presents preliminary results from
a simulation study. In particular, we adopt hierarchical dy-
namic Bayesian networks (DBN) for modelling the observed
internal (via proprioceptive sensors) and external (via extero-
ceptive sensors) phenomena [5]. Hierarchical DBNs allow to
perform inferences and contextualize proprioceptive and ex-
teroceptive sensory data at different abstraction levels. These
inferences serve then as input for abnormality detection. We
further extend modelling to multi-robot systems by coupling
hierarchical DBNs.

II. FRAMEWORK

Even though current studies [4], [3] suggest detecting
abnormality from an inference model trained by evenly
ordered exteroceptive and proprioceptive sensory data, we
suggest deriving independent inference models for each of
these types of sensors and pair only exteroceptive models
with a following proprioceptive model. As such, the robots
can (1) choose the most appropriate proprioceptive infer-
ence model according to the best predicting exteroceptive
model, (2) deduce preferred next states from proprioceptive
most probable states derived from its inference model to
be used for control decisions, and (3) ignore exteroceptive
observations for which no control decision should be made
internally.
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Fig. 1. The proposed SA framework learns offline proprioceptive and
exteroceptive models which are used for online abnormality detection.

Figure 1 depicts our proposed SA framework for a multi-
robot system. Proprioceptive and exteroceptive sensor data
is preprocessed and either forwarded to offline learning
or online abnormality detection. In the offline phase, two
models based on coupled hierarchical DBNs are learned from
the observed behavior of the robots. In the online phase,
inferences from the learned models are compared with the
current observations. An abnormality indicates a deviation
between learned and observed behavior and may trigger the
learning of new models.

A. Coupled hierarchical DBNs

Causal-temporal behaviors can be modeled by DBNs,
which also support a hierarchical representation using vari-
ous well-known approaches. For example, Kalman filters can
be used for the continuous level, whereas particle filters can
be used for the discrete level. We thus adopt DBNs for our
modelling approach (cp. Figure 2). We cluster the observed
sensor data Z into a sequence of quasi-stationary segments
where the continuous state X represents the behavior within
a segment and each segment corresponds to an abstracted
state S. Coupled DBNs introduce an additional coupling layer
D between multiple DBNs and causal relationships among
the abstract state variables to model the interaction between
multiple robots.

B. State transition and Abnormality Detection

For collective behavior, we couple the contributing indi-
vidual behaviors based on their abstract states and refer to the
possible combinations as coupled state D. State transitions
indicate changes of quasi-stationary behaviors and are mod-
elled by a matrix of state transition probabilities computed
by the occurrence of successive coupled states according to
closest observations.

Abnormality detection is founded on measuring the dis-
tance between the most probable coupled state prediction and
the current observations of multiple robots. In particular, we
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Fig. 2. Hierarchical coupled DBN. Horizontal lines present temporal
relationship between random variables at two consequent time steps t
and t − 1. Vertical lines present the causal relationship between them. Z
represents the observation, X the continuous state, S the abstract level state,
and D the coupled state. π represents the transition probabilities at different
levels and λ the occurrence likelihood of states according to lower level
parameters.

use the Kullback–Leibler divergence between the center of
the forming abstract states of D and the robots’ observation
as abnormality value. If this value exceeds a threshold the
current abstract state is inconsistent with the observed be-
havior triggering the creation and training of a new coupled
DBN model.

III. PRELIMINARY RESULTS

We conducted a simulation study with the multi unmanned
aerial vehicle (UAV) simulator CTU-MRS [1] which is built
upon the Robot Operating System (ROS). We use four
scenarios where two UAVs fly along rectangular trajectories
and capture GPS position as proprioceptive data and LIDAR
measurements as exteroceptive data for our study. These
multi-UAV scenarios are implemented in a leader-follower
architecture using model-predictive control for the Pixhawk 4
autopilots. One scenario serves as reference scenario1 for
learning the initial models (cp. Figure 3 left), whereas the
others serve as test scenarios that include some blockage
along the planned trajectories resulting in some evasive
manoeuvres of the UAVs2.

We trained the coupled DBNs with the captured GPS and
LIDAR data from 10 simulation runs. The sensor data was
clustered into 75 abstract states (cp. Figure 3 right). Figure 4
(top) shows the abnormality values for the reference and
one test scenario. The abnormality values (Kullback–Leibler
divergence) for the reference scenario remains below 103

units while for the test scenario, they reach approximately to
5.0×105 units in the regions where the blockage happens.

Figure 4 (bottom) shows the abnormality values for the
LIDAR. For feature extraction of the LIDAR data, we used
an artificial neural auto-encoder with 5 layers each for the
encoder and the decoder and reduced the LIDAR scans
to 2 dimensions. The abnormality value increases before
the UAVs enter the blockage area. This early detection is

1youtube.com/watch?v=GHD4VmcIHFo
2youtube.com/watch?v=1YGSk7YKcpI

Fig. 3. Two UAV reference scenario (left) and clustering of the GPS data
to form coupled states (right).

expected since the LIDAR can scan the environment of some
distance.

Fig. 4. Abnormality values of the reference (blue) and test (red) scenario
using the proprioceptive model and GPS data (top) and the exteroceptive
model and the LIDAR data (bottom). The evasive UAV behavior in the test
scenario results in a significant increase of the abnormality value.

IV. CONCLUSION

We introduced a framework towards self-awareness in
multi-robot systems capable of learning offline propriocep-
tive and exteroceptive models which can be used for online
abnormality detection. As future work we plan to expand
our simulation study to more complex scenarios including
different sensors, to investigate alternative distance metrics
for abnormality detection, and to efficiently rank the validity
of multiple models.
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