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Abstract— Tools for specifying and executing multidrone mis-
sions that go beyond pure orchestration of waypoints are rare.
We present the EAMOS framework, which introduces a simple
and intuitive text-based mission specification process to execute
a multidrone mission onboard different heterogeneous drones.
Key benefits of EAMOS are the easy handling of sequential
and parallel drone actions and their automatic synchronization.
A uniform drone-interface abstracts the handling of different
drone types, and specialized mission control structures enable
specifying high-level missions. Our EAMOS prototype has been
completely implemented in Go and successfully demonstrated
in combination with the Airsim multidrone simulation environ-
ment and the PX4 flight controller as a software-in-the-loop
component. Synchronization among multiple drones wrt. their
sequentially and concurrently performed actions as well as
the correct application of mission control structures behave
as expected.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have proven to be
a powerful tool for many use-cases in civil, governmental
and military domains such as search-and-rescue, defense
and surveillance, agriculture, logistics or for entertainment
purposes [1]. While drone development and deployments are
rapidly evolving, we observe that the availability of domain-
independent, highly general, easily extendable, platform- and
use-case-agnostic mission specification and execution tools
is lacking behind. Besides a large number of enterprise mis-
sion planning tools that provide sophisticated graphical user
interfaces and a manifold of features, the landscape of free
and open-source research tools, whose mission planning goes
beyond a pure orchestration of waypoints is comparatively
small [2].

In this paper, we introduce the Execution for Aerial Mul-
tidrone Operations and Specifications Framework EAMOS
(Figure 1) to close the gap of multidrone mission speci-
fications described above. Its novelty lies in the intuitive
and simple syntax for utilizing parallel drone operations,
which can easily be deployed and efficiently executed on-
board heterogeneous drones. Moreover, EAMOS combines
all key aspects of a drone mission execution stack under one
architecture, which supports the framework’s expandability
and maintenance. An EAMOS prototype has been completely
implemented and integrated with the multidrone simulator
Airsim and the PX4 flight controller.

In the following, we briefly discuss related work in drone
mission specification. One example of textually specifying
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Fig. 1: Overview of the Multidrone Mission Framework EAMOS. Multidrone
Mission Specifications are fed into the Mission Compiler, which is gener-
ating drone-deployments that are executed onboard by Drone Execution
Environments utilizing the Mission Middle Layer to interface with drone
platforms.

drone missions is the XML-based approach TML1 [3],
which is easy to comprehend but limited when it comes to
expressing the control flow of a mission. A similar approach
comes from Torres-González et al. [4], who propose a system
for specifying cinematographic drone missions by using both
graphical support and XML-based mission specification. A
different approach named Papyrus by Radermacher et al. [5]
specifies missions through high-level tasks that are expressed
as behavior trees and get executed in a role-based layered
environment based on the RobMoSys project. Alves et al. [6]
propose the custom domain-specific language DRESS-ML,
whose Syntax reminds on SQL. It is used to specifically
define ”exceptional scenarios” that take action under special
circumstances. DRESS-ML code is directly translated into
the language of the target platforms.

II. FRAMEWORK ARCHITECTURE

A. Overview

Our EAMOS framework is composed of the three main
components Mission Compiler (MC), Drone Execution Envi-
ronment (DEX) and Mission Middle Layer (MID). The MC
is in charge of reading and processing multidrone mission
specifications (Section III) to generate individual deployment
packages for the drones involved in the mission. A deploy-
ment for a particular drone contains the individual drone
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mission for that drone, which is derived from the overall
multidrone mission. The MC is a stand-alone application,
which is independent of other components and runs off-board
on any computer (Section IV).

The other two components DEX and MID are running
onboard each drone involved in the multidrone mission.
The DEX is in charge of initially processing and eventually
executing the drone’s mission, which primarily concerns
monitoring dependencies across drones and executing actions
onboard drones (Section V). Drone actions are both standard
operations such as TakeOff, FlyTo and Hover, and special op-
erations only available on specific drone platforms. EAMOS
provides the MID that is in charge of interfacing with the
particular capabilities of a drone platform.

Moreover, the MID provides a generic drone Application
Programming Interface (API), which defines signatures of
drone actions (e.g., FlyTo) and properties (e.g., current X-
location) across different types of drones. Thus, the EAMOS-
API provides a TakeOff -action, which applies to any drone
involved in EAMOS-missions, independent of its platform.
To achieve this platform independence, the MID requires an
adapter, which provides the implementation mapping from
specific drone operations to generic drone actions (Section
VI).

B. Execution Model and Data Transfer

EAMOS uses the programming language Go2 to implement
its execution model, to provide data and information transfer
across drones, and to handle concurrent operations onboard
one drone. The execution model consists of atomic drone
operations (i.e., actions) that might block until certain other
actions have finished executing. This blocking and releasing
mechanism builds entirely on the blocking capability of Go
channels, which means that a channel blocks its current
thread until it receives data from it. To implement these
inter-dependencies, the execution environment in EAMOS
uses Go channels to connect drone actions based on the
derived graphs AMT, MEG, or MDG (Section IV) so that
their predecessors block and release actions appropriately.

Go channels are also utilized to transfer data between
actions. For local transfers, this is done by connecting actions
with channels directly. For transfers across drones, a local
end of a Go channel is connected to a ROS-topic (via
ROS service calls) which spans across platforms within the
ROS3 ecosystem, that connects to a remote Go channel
onboard another drone. Furthermore, Go routines provide a
lightweight, overhead-free and efficient way of spawning and
synchronizing concurrent local drone actions.

III. MULTIDRONE MISSION SPECIFICATION

A. Overview

The multidrone mission specification contains the descrip-
tion of the actual multidrone mission. Similar to a computer
program, the multidrone mission is composed of actions and

2https://go.dev/
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control structures, whereas the former (e.g., TakeOff ) can be
put into named functions to be reused. The core idea is to put
actions into sequential or parallel blocks, which control their
execution behavior and force automatic synchronization. The
simple concept is that sequential calls are executed strictly
one after another, whereas parallel calls start executing at the
same time. Synchronization occurs when blocks are nested.
If, for instance, a parallel block BPAR gets called within a
sequential block BSEQ, the first sequential call that follows
the call to BPAR waits until all calls p ∈ BPAR have finished
executing correctly.

In addition to the automatic synchronization of parallel
blocks, calls can be marked as asynchronous, which lets them
execute in parallel to whatever is called next without letting
it wait for the asynchronous execution to finish. The syntax
of the multidrone mission specification is shown in Listing 1.
Although not executed as a Go-program, we borrow the Go-
syntax because of its simplicity and compatibility with the
Mission Compiler, which is also written in Go.

⟨mission⟩ ::= package ⟨identifier⟩⟨drone⟩ ∗ ⟨function⟩ ∗ (1)
⟨drone⟩ ::= var ⟨drone-name⟩ ⟨drone-type⟩ (2)
⟨funcId⟩ ::= (SEQ | PAR)⟨identifier⟩ (3)

⟨function⟩ ::= func ⟨funcId⟩(){⟨func-body⟩} (4)
⟨func-body⟩ ::= (⟨statement⟩ | ⟨func-call⟩) ∗ (5)
⟨statement⟩ ::= ⟨action-call⟩ | ⟨condition-call⟩ | ⟨func-call⟩(6)
⟨action-call⟩ ::= ⟨drone-name⟩.⟨capability-name⟩(⟨args⟩) (7)
⟨func-call⟩ ::= async(⟨funcId⟩) | ⟨funcId⟩ () (8)
⟨if-cond⟩ ::= If(⟨condition⟩,⟨funcId⟩,⟨funcId⟩) (9)

⟨wait-until⟩ ::= WaitUntil(⟨condition⟩,⟨funcId⟩) (10)
⟨wait-while⟩ ::= WaitWhile(⟨condition⟩,⟨funcId⟩) (11)
⟨repeat-until⟩ ::= RepeatUntil( (12)

⟨condition⟩,⟨funcId⟩,⟨funcId⟩)
⟨repeat-while⟩ ::= RepeatWhile( (13)

⟨condition⟩,⟨funcId⟩,⟨funcId⟩)
⟨repeat-for⟩ ::= RepeatFor( (14)

⟨condition⟩,⟨funcId⟩,⟨funcId⟩,⟨int⟩)
⟨pause-until⟩ ::= PauseUntil⟨condition⟩ (15)
⟨pause-while⟩ ::= PauseWhile⟨condition⟩ (16)

⟨pause-for⟩ ::= PauseFor⟨int⟩ (17)
⟨do-until⟩ ::= DoUntil(Async | Sync)⟨condition⟩ (18)

,⟨funcId⟩,⟨funcId⟩
⟨do-while⟩ ::= DoWhile(Async | Sync)⟨condition⟩ (19)

,⟨funcId⟩,⟨funcId⟩

Listing 1: EBNF description of our multidrone mission specification. Non-
terminals ⟨identifier⟩, ⟨drone⟩, ⟨drone-name⟩ and ⟨drone-type⟩ expand to
strings. ⟨cond-call⟩ expands to either of rules (9)–(19).

EAMOS provides specialized Mission Control Structures
to control the execution flow through the mission. These
Mission Control Structures are tailored to the use-cases of
dynamic multidrone missions and are available as until- and
while-conditions to control mission execution more conve-
niently. Using while- or until-conditions determines whether
conditional branches are executed if the control-condition
becomes true or false, respectively. Examples of Mission
Control Structures are illustrated in Figure 2.

https://go.dev/
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1 var Drone1 DroneType1
2 var Drone2 DroneType2
3 var Drone3 DroneType3
4
5 func INIT() {SEQ_perform_mission()}
6
7 func SEQ_perform_mission() {
8 PAR_arm_drones()
9 PAR_go_drones()

10 PAR_disarm_drones()}
11
12 func PAR_arm_drones() {
13 Drone1.Arm()
14 Drone2.Arm()
15 Drone3.Arm()}
16
17 func PAR_disarm_drones() {
18 Drone1.Disarm()
19 Drone2.Disarm()
20 Drone3.Disarm()}
21
22 func PAR_go_drones() {
23 SEQ_go_drone1()
24 SEQ_go_drone2()
25 SEQ_go_drone3()}
26
27 func SEQ_go_drone1() {
28 If(Drone1.Sensor1() >= 100, SEQ_go_right,

SEQ_go_left)
29 Drone1.Land()}
30
31 func SEQ_go_drone2() {

32 Drone2.Takeoff(10)
33 PAR_drone2()}
34
35 func SEQ_go_drone3() {
36 WaitUntil(Drone1.X() >= 5 || Drone1.X() <= -5,
37 SEQ_drone3_meet_drone1)}
38
39 func SEQ_drone3_meet_drone1() {
40 Drone3.Takeoff(3)
41 async(SEQ_sense_drone3)
42 Drone3.FlyByX(Drone1.X())
43 Drone3.Land()}
44
45 func PAR_drone2() {
46 Drone2.Orbit()
47 RepeatWhile(Drone3.Y() >= 3, SEQ_picture,
48 SEQ_Drone2_Land)}
49
50 func SEQ_go_right() {
51 Drone1.Takeoff(3)
52 Drone1.FlyByX(5)}
53
54 func SEQ_go_left() {
55 Drone1.Takeoff(4)
56 Drone1.FlyByX(-5)}
57
58 func SEQ_picture() {
59 Drone2.TakePicture()
60 PauseFor(3)}
61
62 func SEQ_sense_drone3() {Drone3.Sensor2()}
63 func SEQ_drone2_land() {Drone2.Land()}

Listing 2: Example multidrone mission description using the Go-syntax. This mission involves three drones, organizes its actions in multiple sequential
and parallel functions and uses Mission Control Structures such as an If - and WaitUntil-condition to control the mission flow. The mission is described in
Section III-B and graphically illustrated in Figure 3.

Fig. 2: Examples of Mission Control Structures using circles as actions and
right/left angle brackets as condition nodes: (A) the asynchronous DoWhile-
cond.; (B) the If -cond. The red dashed line indicates a transfer of the
condition outcome so that the if-branches know which one to continue and
which one to terminate. (C) the RepeatUntil-cond.

1) If: If tests a condition and either launches the true-
branch or false-branch. Every branch is terminated by a
terminal node in the execution flow.

2) WaitUntil, WaitWhile: Wait tests a condition and either
blocks execution of the wait-branch until it becomes true or
executes it as long as it is true.

3) RepeatUntil, RepeatWhile, RepeatFor: Repeat tests a
condition and executes the repeat-branch until it becomes
true (RepeatUntil), while it is true (RepeatWhile) or for a
constant number of times (RepeatFor), before it loops back
to its starting point to repeat the process. If the condition
prohibits repetition, the non-repeat-branch gets launched
instead.

4) PauseUntil, PauseWhile: Pause tests a condition and
blocks execution of the mission until the condition becomes
true or as long as it is true.

5) DoUntilAsync, DoWhileAsync, DoUntilSync,
DoWhileSync: Depending on the condition outcome,
Do launches the do-branch or continues with immediate
execution. If the condition outcome changes, execution
is interrupted, and the done-branch is launched. The
asynchronous Do launches the do-branch asynchronously
from its origin branch. The synchronous Do-version executes
the do-branch and jumps to the do-terminal if interrupted
by the condition becoming true or false, respectively. It
continues with execution that was blocked before.

B. Example Mission

To illustrate the basic features of our EAMOS Framework,
we use a simple demonstration scenario (Listing 2 and
Figure 3). Here, three drones perform three basic actions
in parallel (#7f.): Initially, all three drones are armed at their



Fig. 3: Mission illustration from Listing 2 depicting three drones in the x/y
plane at different time points. Red numbers represent lines in Listing 2.
Colors indicate: black–armed, red–moving, grey–previous location, green–
landed. (A) Drones are armed and Drone1 takes off. (B) Drone1 reads a
value ≥ 100 and flies right; Drone2 takes off in parallel. (C) Drone1 lands
and Drone2 starts orbiting and making pictures. (D) Drone2 keeps orbiting,
Drone3 takes off and flies right, because Drone1 flew right before. (E) All
drones have landed.

locations which have x-values of 0 (#12f.). Next, Drone1
performs a sensor reading, and if the sensed value is greater
than 100 (#28) it takes off and either flies right or left by an
x-value of 5 (#52) or by an x-value of -5 (#56), respectively.
Once Drone1 has reached either of its two positions, it lands
(#29). In parallel to that (cf. #22), Drone2 takes off (#32)
and starts orbiting (#46) while it continuously (#47) takes
pictures (#59) as long as Drone3’s height is higher than 3
(#47). Drone3 waits in parallel (cf. #22) for Drone1 to either
reach a location with an x-value greater than 5 or smaller
than -5 (#36). If this happens (#39), Drone3 takes off (#40),
performs a sensor reading (#62), flies to the x-location of
Drone1 (#42), and lands (#43). If Drone3 drops below a
height of 3 (#47), Drone2 stops orbiting and lands (#63).
After all drones have landed, they get disarmed (#10.).

IV. MISSION COMPILER

EAMOS’s Mission Compiler (MC) is in charge of compil-
ing multidrone mission specifications into individual drone
deployment packages that are executed onboard drone plat-
forms. The MC is organized into five major components,
which process the input mission in a step-wise manner. Dur-
ing these processing steps, every compilation stage generates
intermediate outputs that serve as input for their successive
stage until the final deployments are generated. Figure 4
shows the processing stages together with the outputs of the
MC. The MC is completely implemented in Go.

A. Mission Parsing

In the first stage, the MC reads a multidrone mission
specification and uses Go’s source code parser to construct
a complete abstract syntax tree (AST). This tree serves as a
base for constructing mission objects such as drone actions,
sequential or parallel execution branches, or mission control
structures.

Fig. 4: System components of the EAMOS’s Mission Compiler.

B. Static and Dynamic Mission Graphs

The Mission Graph Processor receives mission objects
from the MC and generates the Abstract Mission Tree (AMT)
and the Mission Execution Graph (MEG). The former reflects
the static structure of a mission, while the latter reflects the
dynamic execution flow of a mission. In the AMT, parent
nodes reflect sequential and parallel functions, while leafs
reflect drone actions.

More formally, the AMT is a connected, directed graph
AMT = (VA, EA) with vertex set VA = {i}∪A∪S∪P∪C∪
T and a partially labeled arc set EA = (Sources×Targets),
where i is the initial node, A is the set of drone actions, S is
the set of sequential nodes, P is the set of parallel nodes, C
is the set of condition nodes, T is the set of terminal nodes
for mission condition branches, Sources = {i}∪S ∪P ∪C
and Targets = A ∪ S ∪ P ∪ T . Arcs e ∈ (S × Targets)
are labeled with a sequence number that reflects the order
in which the sequential children t ∈ Targets are specified
(and executed later). When creating an AMT from Listing 2,
sequential blocks (e.g., #7 and #27) become sequential nodes
in S, parallel blocks (e.g., #12 and #22) become parallel
nodes in P , and drone actions (e.g., #13 and #51) become
leafs of the AMT. Figure 5 shows the AMT of the multidrone
mission from Listing 2.

In the next processing step, the AMT is used to create
the Mission Execution Graph (MEG). By imposing an order
among nodes, the MEG reflects the mission’s execution flow.
Directions of arcs specify predecessors and successors of
nodes implementing a simple execution model in which
a node can only execute if all predecessors have finished
executing, and a node triggers all of its successors once it
finished its own execution.

The MEG is a connected, directed graph MEG =
(VM , EM ) with vertex set VM = VA \ S and arc set EM =
(SourcesM×TargetsM ), where SourcesM = {i}∪A∪P∪
C∪T and TargetsM = A∪P∪C∪T . In particular, since the
MEG reflects the dynamic execution order of actions, it does
not have any vertices from S anymore, because all children



Algorithm 1 MEG generation.

Input: Abstract Mission Tree AMT
Output: Mission Execution Graph MEG

1: for all d ∈ depths from dmax to 0 do
2: for all s ∈ SEQd do ▷ SEQd: all s with depth d
3: children← sorted children of s wrt. exec.order
4: for i← 0 to |children| do
5: child← children[i]
6: leafs← all leafs of sub tree w. root child
7: for all l ∈ leafs do
8: sibling ← children[i+ 1]
9: connect l and sibling by an arc

10: end for
11: end for
12: end for
13: parent← parent of s
14: link parent with first child of s by an arc
15: remove s from AMT
16: end for

of sequential vertices get recursively chained together in their
corresponding order. Both the AMT and the MEG have vertex
i as their root.

We convert the AMT to the MEG by ”closing” all sequen-
tial vertices of the AMT (cp. Algorithm 1). Closing a sequen-
tial vertex s with children c0, c1, . . . , cn means that all chil-
dren are chained together by arcs according to their execution
order, yielding new arcs (c0, c1), (c1, c2), . . . , (cn−1, cn). Fi-
nally, the parent p of s is chained to c0 by the new arc
(p, c0), and s is eventually removed from the graph. Since
the children of s can be arbitrarily complex sub trees on their
own, closing must consider two points: First, the algorithm
processes sequential vertices in a descending order wrt. their
depths within the AMT, starting with those that have the
highest depths. Second, when a child ci is chained with its
sibling ci+1 (that comes next wrt. its sequence number) and
ci is a sub tree T , the algorithm takes all leafs l0, l1, . . . , lm
of T to create new arcs (l0, ci+1), (l1, ci+1), . . . , (lm, ci+1)
to chain ci to ci+1 which is chaining T to ci respectively.
Figure 6 shows the generated MEG of the multidrone mission
from Listing 2.

C. Mission Slicing

To distribute the multidrone mission over all involved
drones, the global MEG is used as a base to create individual
Mission Dependency Graphs (MDG). These graphs contain
only parts of the multidrone mission relevant for a particular
drone. MDG for drone d contains all (local) actions that are
supposed to execute onboard d as well as all dependencies
to other drones (i.e., external actions that are predecessors of
local actions or external actions that are successors of local
actions). Hence, a MDG is no sub-graph of a MEG. More
formally, a MDG is a directed graph MDG = (V,E) with
vertex set V = VE ∪ VL and arc set E = EL ∪ EE ∪ EP ,
where VL are local actions and VE are external actions,
EL = (VL × VL), EE = (VE × VL) ∪ (VL × VE), and

Fig. 5: Abstract Mission Tree (AMT) of the multidrone mission in Listing 2.
Triangle: initial mission node (#7); squares: sequential nodes (e.g., #11),
diamonds: parallel nodes, also called forks (e.g., #17); circles: action nodes
(e.g., #13 or #18); right pointer: condition nodes (e.g., #36); left pointer:
terminals for condition branches (not specified in Listing 2). Labels of
sequential nodes, forks and condition nodes denote (node id/node type/mis-
sion identifier) and action nodes denote (node id/action name/drone name).
Labels of arcs reflect execution order of sequential children. The dotted arc
reflects the Repeat-Loop (#47)

Fig. 6: Mission Execution Graph (MEG) of the multidrone mission in
Listing 2. The MEG reflects execution order of the multidrone mission: A
node can only execute, if all of its predecessors have finished executing.
Forks trigger all successive nodes at the same time. Conditions spawn
multiple branches, which are executed depending on evaluation during
mission runtime. Terminals are inserted to terminate branches and to
synchronize with terminals of other branches. Arc from ”n30” to ”n24”
is a loop from #47 of Listing 2. Control vertices (forks or conditions) do
not have a drone assigned to it, because these nodes were just introduced
to implement the structure of the multidrone mission.

EP are arcs that connect the terminal of a true-branch of
an if-condition with its counterpart, which is the terminal of
the false-branch of the same if-condition. More specifically,
VE consists of all external vertices that are immediate
predecessors or immediate successors to local vertices. Since
an MDG consists of a subset of not necessarily connected
nodes of its origin MEG and of nodes from other MDG, the
MDG is not necessarily a connected graph.

Figure 7 shows the MDG for Drone1 of our multidrone
mission scenario, which is based on the MEG in Figure 6.
The MEG-to-MDG conversion works as follows. For every



drone d involved in the MEG, one Mission Dependency
Graph MDGd is created. For creating MDGd, the conver-
sion algorithm considers all vertices v ∈ VMEG that belong
to drone d and sequentially performs the following three
processing steps.

1) Forward Processing for Forks: Given a current vertex
v ∈ MEG that belongs to d, and one successive fork f
connected by arc (v, f), vertex f is added to MDGd. Next,
all paths pathi starting at f , which do only consist of forks
followed until the first node other than a fork ni for every
pathi is reached. Assuming that ni is assigned to drone k,
vertex f is cloned to the new vertex fk for every encountered
drone k and the new arc (v, fk) is added to MDGd. This
process for f repeats for all successors of v.

2) Node Processing for all nodes other than Forks:
Given a current vertex v ∈ MEG other than of type fork
and that belongs to d, v is added to MDGd. Next, all
predecessors pre ∈ Predv and successors suc ∈ Succv are
connected to v by adding arcs (pre, v) and (v, suc) to the
MDG. Here, predecessors and successors from drones other
than d are considered as well, which introduces external
nodes to the MDG.

3) Backward Processing for Forks: Given a current
vertex v ∈MEG that belongs to d, and one preceding fork
vertex f , connected by arc (f, v), all backward paths pathi

that only consist of forks are iterated backwards until the
first node ni other than a fork for every pathi is encountered.
During this iteration, all vertices and arcs of pathi are added
to MDGd. Especially, every endpoint of path pathi is linked
by external or internal arcs, depending on whether or not the
drone of ni is the same as the drone of the previous vertex
of pathi. While forks did not belong to any drone before
this step, they are now assigned to drone d. This process for
f repeats for all predecessors of v.

D. Mission Synthesizing

Mission synthesizing translates the MDGd into a drone
mission Md for all drones d by generating executable Go-
files. The Md-file is executed onboard drone d by its Drone
Execution Environment (Section V).

Synthesizing the Md-file encodes all information about all
internal nodes of the mission and all external nodes that have
any dependencies to internal nodes. Code for internal nodes
describes the associated drone actions and their internal and
external dependencies. External nodes just describe their
dependencies to internal nodes. Besides nodes that represent
drone actions, mission control structures are also encoded
into the Md-file. The structure of the Md file consists of a
static setup-part and a dynamic runtime-part.

1) Drone Mission File Setup: For setup, node-objects
(actions, forks, conditions, terminals), which correspond to
the vertices of MDGd, are declared. Every node-object-
declaration defines its dependencies to preceding nodes,
which correspond to the arcs of the MDGd. Setup also links
node-objects together according to their dependencies. This
linking generates an executable structure in which every node
knows its internal and external prerequisites to trigger the

Fig. 7: Mission Dependency Graph for Drone1 of the mission of Listing 2.
Solid arcs reflect internal arcs connecting local actions, dashed arcs reflect
connections between internal and external nodes, and red dashed arcs reflect
partner connections between the true-terminal and the false-terminal. Note
that control vertices such as forks and conditions are now assigned to drones.

Fig. 8: Mission Dependency Graph for Drone2 of the multidrone mission
of Listing 2 derived from the MEG in Figure 6. The dotted arc from n30
to n24 represents a loop that originates from a Repeat-Condition. All other
features are as described in Figure 7

start of its local or external executions. Setup is performed
once at start-up of the multidrone mission onboard drone d.

2) Drone Mission File Execution: Once the mission node
structure has been fully established during setup, all nodes
are initially started by what lets them listen to their incoming
channels, checking whether any of their prerequisite nodes
signal the finishing of their execution.

E. Mission Deployment

In a first stage of mission deployment, source files of all
synthesized missions Md together with files for the DEX are
copied to a temporary setup-space. In a second stage, these
sources are compiled by the Go-compiler and executable
binaries are generated. Finally, one deployment package for
each drone d is assembled, consisting of executable files of
the Adapter Space, the Uniform Space and the mission file
Md.

V. DRONE EXECUTION ENVIRONMENT

The Drone Execution Environment (DEX) is a manage-
ment and execution environment that runs Drone Mission



Fig. 9: Architecture of the Drone Execution Environment. Execution and
control communication is carried out by service calls, translated into Go-
channels and forwarded through bridges.

Files onboard drones. It is written in Go and launched
onboard drones as a Go-program by the Go-runtime en-
vironment. Two main responsibilities of the DEX are the
control and execution of mission statements and the transfer
of data among nodes. Both follow internal links onboard
one drone as well as external links that go beyond drone
boundaries to external nodes. The environment distinguishes
two types of links: (1) execution links (ni, nj)E connecting
two nodes and enabling the execution of nj by ni and (2)
control links (ni, nj)C , which enable ni to send some control
messages to nj . Control messages from ni to nj can, for
example, trigger the execution of nj , lock nj for further
executions, implement mission control structures that involve
nj or associate data with nj for later processing.

Overall, the Drone Execution Environment runs ROS-
nodes and facilitates the provided communication infrastruc-
ture such as ROS service calls. The architecture illustrated in
Figure 9 was implemented to realize internal node executions
and external node triggers. This architecture describes an Ex-
ecution Engine that is in charge of executing internal nodes
meaning that all nodes therein are connected by internal
arcs. Two components called InBridge and OutBridge are
in place for internal nodes that have external links attached.
If an internal node n has an external link (execution or
control) as a prerequisite, the internal node is attached to the
InBridge by an external link (InBridge, n). On the other
hand, if n triggers an external node by an external execution
link, n is attached to the OutBridge by an external outward
execution link (n,OutBridge). Since any node is supposed
to be able to send control information to any other node, the
InBridge connects every internal node within the Execution
Engine with an inward control link, and every internal node
is connected to the OutBridge by an outward control-link.

Communication over links is carried out by ROS service
calls, which are provided by the Drone Execution Service
Provider and called by the Drone Execution Service Client.
An internal node ni of drone di, triggering an external node
of drone dj , forwards data from ni to the local OutBridge of
drone di, packs the data into a service call that is received by

Fig. 10: Internal and external connections of actions among drones showing
execution and control links.

Fig. 11: Architecture of the Middle Layer, which is in charge of mapping
drone capabilities and properties from the uniform API to specific drone
platforms. ROS-Actions are utilized to (1) get continuous feedback about
the action’s progress, (2) get notified when an action goal is fulfilled and
(3) be able to cancel a running action.

the remote service provider of drone dj , where data is read by
the InBridge and forwarded through the external link of the
corresponding internal node nj . To send a control message
from one node to another internally, an internal control link
connects the local OutBridge with the local InBridge so
that communication goes from nodesrc to OutBridge to
InBridge to nodercv . This mechanism takes advantage of
the InBridge being connected to any internal node. Figure 10
illustrates this communication scheme.

VI. MIDDLE LAYER

Since our framework supports heterogeneous fleets of
drones, we define a general API of drone capabilities
and properties, which can be uniformly applied to every
drone. Our Middle Layer (ML) translates uniform API-calls
downwards to specific ones and generalizes specific replies
upwards to comply with the uniform API (Figure 11. The
ML provides a Uniform Space and an Adapter Space. The
first implements the uniform drone-API and is supposed to be
used by drone mission files to interact with drones. The latter
implements uniform API functionality targeting a specific
drone platform.

A drone type is compatible with EAMOS, if a correspond-
ing platform-adapter is available in the Adapter Space of
the ML. Both Uniform- and Adapter Space are organized



in Actions and Brokers. Actions implement standard drone
actions such as TakeOff as well as more specific ones such
as Orbit, if a platform supports them. Brokers deliver data
from the drone to upper layers in the execution stack such
as drone position or sensor readings. Uniform Brokers are
publicly available for anyone to request drone properties.
Furthermore, the Uniform Space provides utility implemen-
tations such as a LocationValidator to monitor whether a
drone reached a target location, or the Mover, which actually
moves a drone to a target location. Drone Mission files,
which contain the mission-part for one individual drone, are
entirely synthesized using Go. The Uniform Space of the
ML with its uniform API is entirely implemented in C++.
Hence, a not so trivial language-barrier exists because drone
mission files and the ML need to work closely together. To
overcome this barrier, we use the programming language
interface framework SWIG4 to make the Go-layers and the
C++-layers work together. The Uniform Space provides a
C++-file declaring the uniform drone API, and a SWIG-
interface file mapping Go-code to C++-code and vice versa.
SWIG converts the public C++ uniform API into Go so that
drone missions can access the capabilities and properties of
drones originally provided in C++, by using Go.

VII. EVALUATION

For our evaluation, we set up a full ROS Noetic en-
vironment on an Ubuntu 20.04 installation that runs the
MAVLINK ROS-package mavros5, the Pixhawk flight con-
troller PX46, the monitoring and interfacing tool QGround-
ControlStation7 and Microsoft’s Unreal-based simulation
engine Airsim8 (Figure 12). This environment enables a
software-in-the-loop simulation of realistic multidrone sys-
tems. Since many real drone platforms use the same software
modules (except Airsim), we can run EAMOS drone deploy-
ment packages without loss of generality on the correspond-
ing DEX and MID (separate instances for every drone).

Our ongoing experiments with EAMOS involve different
simple missions with up to four simulated drones, all show-
ing the drones performing the expected synchronized ma-
neuvers in accordance to their multidrone mission. Once all
supporting systems are up and running, modifying a mission
requires first recreating and then redeploying the multidrone
mission, followed by restarting the mission onboard the
simulated drone, which all happens with a few clicks. Using
the Go-profiler pprof9, we assessed EAMOS’s space- and
runtime- performance during creating and starting a mis-
sion. Creating the mission from Listing 2 (34 nodes) required
4368.78 kB and took 50 ms while starting the mission for
Drone1 (22 nodes) required 3749.50 kB taking 916.63ms.
We further tested the scalability by creating a stress-test
mission with more than 5000 nodes and 20 drones which

4http://swig.org/
5https://github.com/mavlink/mavros
6https://px4.io/
7http://qgroundcontrol.com/
8https://github.com/microsoft/AirSim
9https://github.com/google/pprof

Fig. 12: Our simulation environment showing three simulated drones in
Airsim (foreground) that all have their own software-in-the-loop deployment
consisting of PX4, mavros and the EAMOS-deployment, which are all used
by the QGroundControlStation (background) to visualize vehicle telemetry
and indicate vehicle locations on the map.

required 23979 kB and took 2.34 s. Starting the mission for a
drone with 634 nodes required 4257.45 kB taking 733.64 ms.

VIII. CONCLUSION

The results of our experiments suggest EAMOS to be a
promising approach for utilizing multiple drones through
continuously specifying and executing multidrone missions
for them. The lightweight framework runs upon an existing
ROS infrastructure and provides the complete software stack
from mission specification to mission execution. It compiles
arbitrarily complex but easy-to-read and easy-to-write mul-
tidrone missions and deploys them to heterogeneous drones
while providing a uniform platform API. One challenge for
the coming steps is to provide mechanisms that assist in
formulating high-level missions with basic drone actions
such as aggregating actions. We will extend our laboratory
setup to replace simulated drones by real quad-copters in
future work.
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